

NORTHWEST NAZARENE UNIVERSITY

Fire Monitoring and Assessment Platform: Image Post-processing and Image Manipulation

THESIS
Submitted to the Department of Mathematics and Computer Science

in partial fulfillment of the requirements
for the degree of

BACHELOR OF SCIENCE

Jonathan W Hamilton
2017

THESIS
Submitted to the Department of Mathematics and Computer Science

in partial fulfillment of the requirements
for the degree of

BACHELOR OF SCIENCE

Jonathan W Hamilton
2017

Fire Monitoring and Assessment Platform: Image Post-processing and Image Manipulation

Author: ___
 Jonathan Hamilton

Approved: ___
 Dale Hamilton, M.S., Professor of Computer Science,
 Department of Mathematics and Computer Science, Faculty Advisor

Approved: ___
 Brice Allen, Engineering Lab Manager,
 Department of Physics and Engineering

Approved: ___
 Barry Myers, Ph.D., Chair,
 Department of Mathematics and Computer Science

iii

Abstract

Fire Monitoring and Assessment Platform: Image Post-processing and Image
Manipulation.

HAMILTON, JONATHAN (Department of Mathematics and Computer Science),
DR. MYERS, BARRY (Department of Mathematics and Computer Science).

The Fire Monitoring and Assessment Platform (FireMAP) uses post-fire, aerial imagery
to determine fire severity. Traditionally, post-fire analysis is done by on site wildland
firefighters, satellites, or manned aircraft. Because traditional post-fire image acquisition
is often dangerous for firefighters and too expensive and low resolution from satellites
and aircraft, FireMAP plans to use drones for safer and higher resolution post-fire image
acquisition. The purpose of this section of the FireMAP project is to transform classified
imagery into a form more usable to end users. By the time the aerial imagery has reached
this section of the project, each pixel from a post-fire image has been placed into a raster
and classified as white ash, black ash, dirt, surface vegetation or canopy vegetation.
Within the classified image, the burn area boundaries contain sub-object in size spatio-
spectral clusters resulting in unclear and incorrectly classified pixels leaving a salt-and-
peppered effect across the image. The open source program OpenCV’s open and close

morphological functions fix these problems by smoothing burn area boundaries making
them clearly defined. Because high severity burns leave areas of white ash smaller than
the burnt vegetation, the same morphological functions dilate the high severity burn areas
and delete misclassified burn areas.

iv

Acknowledgments

 First of all, I would like to thank the external individuals and organizations that
made the FireMAP project possible. The funding the project received from NASA, the
Idaho Space Grant Consortium, and the IDeA Network of Biomedical Research
Excellence made it financially possible. Their contribution is deeply appreciated. I would
like to thank the United States Forest Service (USFS) and United States Department of
the Interior (DOI) and other agencies that are interested in the FireMAP project. Their
interest in the FireMAP product gave the project direction. Without them, there would be
no reason to make the project. All the individual employees of the USFS and DOI who
showed interest in the FireMAP project are particularly appreciated. They spent their
time and resources to ensure the FireMAP project fit their needs and was the best it could
be.
 I would also like to thank all those within FireMAP that did quality work for me
to build on. Mikhail Bowerman, Joshua Gambill, Nicholas Hamilton, Llewellyn
Johnston, Glen Lungen, Patrick Richardson, and Greg Smith all worked on sections of
FireMAP that this section heavily relied on, so their good work is greatly appreciated.
Along with mentors Dale Hamilton and Dr. Barry Myers, Llewellyn and Patrick often
gave help on this section of the project and were exceptional resources.

v

Table of Contents

Title Page i

Signature Page ii

Abstract iii

Acknowledgments iv

Table of Figures and Tables vi

Fire Monitoring and Assessment Platform 1

Morphology 4

Inputting and Interpreting Classified Imagery 7

Removing Salt-and-Pepper and Smoothing Boundaries 10

Connected Components 12

High Severity Burn Areas 15

Conclusion 17

Future Work 18

Works Cited 24

Appendix A: Source Code 20

vi

Table of Figures

Figure 1: Morphological Erosion .. 6
Figure 2: Morphological Dilation ... 6

Figure 3: Morphological Open and Close Operations .. 7
Figure 4: Classified Inputted Image .. 10
Figure 5: Classified Image to Burn Area Image ... 12
Figure 6: Smoothing Burn Area .. 14
Figure 7: White Ash Tendrils ... 19

Figure 8: White Ash and Burn Area Overlay ... 20

Table of Tables

Table 1: Input Raster Classification ... 3

Table 2: Classified to Burn Area Conversion ... 11

1

Fire Monitoring and Assessment Platform

 This project is part of the larger Fire Monitoring and Assessment Platform

(FireMAP) project. Traditionally, assessment of post-fire effects is done on-site by

wildland firefighters, satellites, or manned aircraft. Because of the instability of a forest

after a fire, this task is often highly dangerous for wildland firefighters. To adequately

assess a burn and its boundaries, they would have to walk among trees that could fall or

reignite, endangering firefighter safety. Additionally, wildland firefighters often have

difficulty accurately representing and finding all burn boundaries. Insignificantly small

non-burned areas with the burn boundary are especially difficult to represent. Wildland

firefighters monitoring and assessing post-fire conditions is dangerous and often

inaccurate.

 Alternatively, satellites or aircraft could be used. Attaining aerial imagery

provides a more spatially complete representation of the burn extent and severity than

ground assessments done by wildland firefighters; however, it does come with its

disadvantages. Satellites and aircraft are often expensive to operate and replace. Satellites

have to be put into orbit and aircraft have to be fueled, neither of which are cheap. If

either crash due to leaving orbit or some unforeseen flight error, an expensive

replacement will be needed.

Besides being costly to operate, satellites are not reliable to attain timely data.

Satellites orbit the Earth and can only see the area directly below them, so to use imagery

taken from a satellite, it would first need to continue its orbit until it is in a location where

it is over the fire. Landsat, the satellite often used to attain satellite wildland fire data,

2

takes approximately sixteen days to orbit the earth which is too slow of a turnaround

because a lot happens in the first couple of days in a burn area following a fire and that

data would be lost while waiting for the satellite to get into position. The time to get

satellite imagery could be even longer if cloud cover or smoke obscures the burn area.

 Satellites are so high in orbit that they have a very low resolution of around 30

square meters a pixel. While this resolution is sufficient for multi-thousand-acre fires, the

majority of fires are small enough that they would only be a few pixels (Hamilton, 2015).

 Because aircraft operation is expensive and satellites are often unreliable for

smaller burn areas, FireMAP plans to use drones to attain aerial imagery instead of using

traditional fire monitoring and assessment techniques. Using drones is safer than using

firefighters because pilots do not need to walk in the burn areas and can instead fly the

drone from a safer location outside the perimeter of the burned area. If a drone crashes,

they are comparatively cheap and easily replaced.

 Drones have a high spatial resolution compared to satellites. While the spatial

resolution of imagery taken from a drone is dependent on the its height above ground

level when the imagery is taken, even at the maximum legal flying height for drones of

300 meters produces higher spatial resolution imagery than satellites. Flying at 120

meters (400 feet), the spatial resolution of the imagery is approximately six centimeters,

increasing or decreasing depending on the altitude. The spatial resolution of drone

imagery is so high that it might contain more data than is necessary, so it can be

resampled to a lower resolution so that unneeded burn data is not stored and analyzed.

 FireMAP takes the post-fire imagery taken from a Phantom 3 drone, combines

3

them into an orthomosaic and processes the data in the imagery to make useful post-burn

information. The area of a single image from a drone flight (approximately 72 hectares at

a height of 120 meters) may not be large enough to contain the entirety of a fire, so

multiple images need to be captured to contain the entire burn area. FireMAP uses the

photogrammetry orthomosaic software Pix4D1 to stitch together the image segments to

create a complete orthomosaic of the burn area. Pix4D autonomously flies a user

specified path over a post-burn area taking frequent enough images that they overlap. A

GPS latitude and longitude coordinate is assigned to each image which Pix4D uses to

stitch together the imagery. When Pix4D is finished, there is one image containing the

whole of the burn area.

After Pix4D makes an orthomosaic of the burn area, the orthomosaic is classified

into one of seven classes: black ash, white ash, surface vegetation (herbaceous or shrub),

canopy vegetation (conifer or deciduous) and bare soil (or rock). The classes and their

equivalent values are shown in Table 1.

Table 1: Input Raster Classification

Class Value Class Name

0 White Ash
1 Black Ash
2 Herbaceous
3 Shrub
4 Conifer Trees
5 Deciduous Trees
6 Dirt/Soil

1 Pix4D is documented and downloadable at pix4d.com

4

Each of the classes has different attributes assigned to them for assessing fire

severity. Black ash and white ash depict fire severity where black ash is low severity and

white ash is high severity (Lentile, 2006). Surface vegetation, canopy vegetation, and

bare soil all represent non-burn areas in different ways. Dirt and surface vegetation are

similar and are only differentiated to make classification easier. Canopy vegetation is

different because canopy cover in aerial imagery obscures the ground under it forcing

assumptions to be made about the burn severity under the canopy. If more information on

the image classification is wanted, the other FireMAP projects are good resources on

Class Separability2, Object Identification using Clustering3, and Object Identification

using Machine Learning Algorithms4.

2 Bowerman, M. Data Collection, Analysis, and Class Separability
3 Richardson, P. J. Object Identification in Imagery Using Cluster Analysis
4 Johnston, L. B. Detecting Burn Severity in Post Wildland Fire Imagery through k-Dimensional Trees and

k-Nearest Neighbours Machine Learning Algorithms

5

Morphology

 This section of the FireMAP project heavily relies on morphological image

processing functions. Since morphology is most commonly related to biology an

understanding of morphology as it applies to the FireMAP project is needed. For this

project, morphology can be described as mathematics for binary imagery.

 If addition and subtraction are the most basic mathematical functions, then

erosion and dilation are the corresponding most basic morphological functions. Both

erosion and dilation are binary morphological functions manipulating images with pixel

values of either 255 (positive value) or 0 (negative value). Erosion of set A by set B is “a

set of all points x such that B translated by x is still contained in A” (Morphological

Operations: An Overview, 1996). A pictorial representation of the erosion process is

shown in Figure 1. Set B, often called the structuring element, has an origin point

depicted by a black dot in Figure 1. Set B’s origin is compared to each individual pixel in

set A. If not all the overlapping pixels in set A where set B is currently checking are

positive, then the pixel in set A where set B’s origin is currently located is made negative.

Erosion has a shrinking effect on the boundaries of objects in a binary image making the

objects have smaller areas.

6

Figure 1: Morphological Erosion5

 Morphological dilation is like erosion but expands instead shrinks boundaries of

objects in a binary image. A pictorial representation of dilation is shown in Figure 2. Set

B’s origin is compared to each individual pixel in set A. If there are any overlapping

positive pixels in A where B is currently checking, then the pixel in set A where set B’s

origin is currently located is made positive.

Figure 2: Morphological Dilation6

 This project primarily uses open and close morphological operations which are

5 (Morphological Operations: An Overview, 1996)
6 (Morphological Operations: An Overview, 1996)

7

combinations of erosion and dilation. An open morphological operation of set A by set B

first erodes then dilates set A by set B. (Morphological Operations: An Overview, 1996)

Opening gets rid of small islands and extrusions of positive pixels. A close morphological

operation of set A by set B first dilates then erodes set A by set B (Morphological

Operations: An Overview, 1996). A closing gets rid of small holes and extrusions of

negative pixels. A pictorial representation of the open and close morphological operations

are shown in Figure 3.

Figure 3: Morphological Open and Close Operations7

Some other morphological functions were considered for use in this project, but

the better improved results would not have been enough to justify the added complexity

and run time. The implementation of a thickening morphological function would create a

more accurate representation of small islands of high burn severity, but a simpler dilate

7 (Morphological Operations: An Overview, 1996)

Close

Open

8

morphological function is used in the final product. The thickening morphological

operation is still in the code, but is incomplete because it was not used in the final

product. It is more important to understand that the functions exist and that they were

considered than how they work.

9

Inputting and Interpreting Classified Imagery

 By the time the post-burn imagery gets to this section of the project, it has already

been classified and stored in raster format. The imagery would have been passed to this

section of the project in one of the usual image formats like JPG, but those formats distort

the imagery for a smaller storage size which in this case would result in the loss of data.

To avoid data loss, a raster was used instead of traditional image formats.

A raster is a two-dimensional matrix where each cell holds a numerical value

related to the pixel the raster represents. The values in the raster ranged between one and

seven representing the pixel’s classification. Rasters are stored in a text format instead of

an image, so before morphological operations could be done on the imagery, the raster

had to be converted back into an image.

The open source OpenCV library was used to store the post-fire burn

classification data in RAM. OpenCV’s Mat variable is a grayscale image which means

that instead of storing red, green, and blue values for each pixel as is done in a color

image, one value is stored where a value of 0 is black, a value of 255 is white, and the

values in-between are shades of grey scaling from black to white. The Mat variable is like

other variables, except that it is stored on RAM instead of on disk allowing faster access

for manipulation. Additionally, MAT is like other image types, like JPEG, but it does not

compress the imagery data resulting in data corruption. The program converted the

numerical values in the raster to pixel values in the Mat cell by cell. The results of this

process are shown in Figure 4. While the Mat is a grayscale image and could still be

10

shown as a black-and-white image, a color map was applied to make the classes more

distinct and make visualizing the data easier. Each grayscale value in the Mat was given a

color representation. For example, the dark blue is low severity burn, the light blue is dirt,

the orange is brush, and the light green is conifer canopy.

Figure 4: Classified Inputted Image

Besides the two-dimensional matrix in the raster, there is also metadata giving

useful information about the data. While a wide range of metadata was brought in with

the metadata, the only ones inputted to this project was the column and row dimensions

of the matrix.

While the data is useful, there is too much information. While classes are all

useful for processing the data throughout the FireMAP project, the current user

requirements care more about where and how severely it burned than all the information

currently included, so post-processing makes the information better match user

requirements. This process is done by making a burn area image, a high-severity area

11

image, and combining the two images to make the final result. Finding high severity

areas will be talked about in a later section.

The burn area image is made from the inputted classified imagery. If a cell is classified as

high or low severity, then the equivalent burn area image cell is positive. If a cell is any

other of the classified values, then the equivalent burn area image cell is negative. Table

2 shows what each of the classes in the classified imagery converts to in the burn area

imagery.

Table 2: Classified to Burn Area Conversion

Class Value Class Name Burn Value Burn Name

0 White Ash 1 Unburned
1 Black Ash 1 Unburned
2 Herbaceous 0 Burned
3 Shrub 0 Burned
4 Conifer Trees 0 Burned
5 Deciduous Trees 0 Burned
6 Dirt/Soil 0 Burned

While there are eight classes in the classified imagery, they are all combined into

two separate classes when converted, so the burn area imagery contains two classes:

burned and unburned. A pictorial representation of the conversion from eight classes to

two classes is shown in Figure 5. Again, a color map was applied to the eight-class

grayscale image to give it the appearance of color for

12

Figure 5: Classified Image to Burn Area Image

 In the classified image, the dark blue areas are white ash and are put in the burned

class in the burn area imagery. While the white ash is too small to be seen in the

classified imagery at this point, it is also put in the burned class in the burn area imagery.

13

Removing Salt-and-Pepper and Smoothing Boundaries

Even with how accurately the data classification is, classification errors and real-

world problems like shadows result in misclassified clusters of pixels belonging to the

same class smaller than the typical object size in that class. The misclassified clusters

create a salt-and-pepper effect on the image. The largest source for this problem is

because the color of black ash and shadow are so similar, the classification section of the

FireMAP project has difficulty distinguishing them. While the problem is in the

classification section of FireMAP, its effects can be significantly reduced in this section

of FireMAP using morphological operations.

A morphological open and close are used to mitigate the salt-and-pepper effect.

When combined, these operations get rid of both positive and negative islands and

extrusions. As mentioned in the section on morphology, a set B acts on set A. In this

case, set A is the burned class and set B is a structuring element with the origin at the

center. The shape of the structuring element had little effect on the burned class, so a

circular one was used. The big question that had to be answered was what radius the

structuring element should be.

If removing incorrectly classified islands of data and smoothing the boundaries

were the only relevant parameters in determining the structuring element’s radius, then a

larger radius would be better. With a larger structuring element, boundaries would be

smoother and larger islands of salt-and-pepper would be taken care of; however, the

radius couldn’t be too large because the burn areas would be transformed into blobs

14

which would inaccurately represent the burn area boundaries. Even with the quality of a

higher structuring element radius, the run time of a larger radius makes large radii

impractical.

The structuring element’s radius could not be too big because the run time

increases exponentially as the radius increases. Because timely output matters to this

project, slightly improved accuracy of burn area boundaries does not justify drastically

increased run times. This section of the project’s runtime would be a couple of seconds

with a radius of a couple of pixels and would rapidly increase to minutes as the radius

increased. The largest radius checked was a radius of 9 which took tens of minutes. To

get the best results, the radius must be large enough that the salt-and-pepper is removed

and small enough that it does not take an unacceptable amount of time to operate.

It was found that a radius anywhere between two and five pixels produced

adequate results. Currently, this section operates using a structuring element with a radius

of four, but that number could easily be changed if the end user wanted. Figure 6 shows

the result of applying the open and closed operations on the burn area imagery where the

left image is before the operations and the right image is after.

Figure 6: Smoothing Burn Area

15

The open and close operations, using a structuring element with a radius of four,

removes most of the salt-and-pepper and smooths the burn area boundaries. There are

still some islands of positive and negative data that were too large for the open and close

to catch, but as stated before, these islands are acceptable at this point of the project so as

not to make too long of a run time. A function was made to take care of the remaining

islands of false data using the Connected Components functionality in the OpenCV

library.

16

Connected Components

The purpose of this section of the program is to remove islands of data too large

for an open and close operation to adequately get rid of. Upon completion of this project,

this section did not meet its desired functionality. Some problems were encountered using

OpenCV’s Connected Components with Stats function. Even with this section not

working, the final result still meets the project requirements, but there are still

insignificantly small clusters of data that are sub-object in size that would be removed if

this section of the project functioned properly.

Connected components can be described as contiguous pixels in the same class

being spatially clustered into groups. OpenCV’s Connected Components takes a binary

image – like the smoothed burn area one made previously – and splits all the positive

pixels into connected components where each component is given a numeric value.

Negative, non-burned pixels are all part of the first connected component, and connected

components are added as they are found.

There are two uses for this section of the project: delete false clusters of data that

a morphological open and close operation could not get rid of and delete sub-object in

size clusters of correctly classified burned or unburned. If there was an area that was

completely burned except for a small patch of dirt, then the entire area would be

classified as burned including the small patch of dirt. Likewise, if an area was completely

unburnt except for a small ember start outside the burn boundary, then the entire area

would be considered unburned. The spatial extent of a burned island considered to be

17

insignificant is different than that of an insignificantly small non-burned area. This

section of the project takes the difference into account and contains two changeable

values for the minimum spatial extent for burned and non-burned islands.

Theoretically, that is how this section would have worked, but there were some

errors that were not fixed by the completion of the project. One potential source of the

problem is while Connected Components is an established function in the OpenCV

library, Connected Components with Stats was released in the newest update to the

library. While new functionality in a purchased product usually works, OpenCV is an

open-source product and is more likely to have bugs in its newer. Further work will be

done to use Connected Components with Stats in this section of the project, but due to its

newness, it will not be assumed functional.

The connected components section of this project removes small positive clusters

of data but has not yet been implemented to remove negative clusters. Implementation of

this functionality would not be difficult to achieve. The image can be morphologically

inverted then the same code that deletes small positive islands of data can also delete

small negative islands of data. After deleting small islands of negative data, the image

would be re-inverted. This had not yet been implemented because there was no need for

added complexity debugging as the original process to remove small positive islands was

not working properly.

18

High Severity Burn Areas

 As previously stated, the one of the desired results of this project is the production

of an image containing the high-severity burn area. High severity burn areas are

identified by white ash, so a binary image can be made using the classified imagery

where white ash is a positive value (white) and anything else is a negative value (black).

Also, high severity areas only occur within low severity areas, so any white ash outside

the burn area is assumed to be false and is marked as negative in the white ash imagery.

After the white ash is found, these areas need to be dilated out to match the actual spatial

extent of the high-severity burn.

 It is reasonable to assume that a white ash region would accurately depict the

spatial extent of a high severity burn area, but it does not. For example, as a campfire

burns down to white ash, the burned material takes up less volume than it did before it

was burned. As shown in Figure 7, when a bush completely burns, all that is left is white

tendrils branching out from the center of the bush, the remainder of completely

combusted larger branches. Because the white ash left behind is smaller than the

vegetation's original spatial extent, it must be dilated out to the actual high severity burn

spatial extent.

19

Figure 7: White Ash Tendrils

 Like with the other classes in the classification, there are falsely classified white

ash pixels in the classified image. Like how salt-and-pepper is removed in the burn extent

imagery, small clusters of high severity burn areas are removed using an erode

morphological function. The remaining white ash is dilated to four times the original

area. The high severity imagery is overlaid onto the burn area imagery. As before, high

severity areas can only occur within the burn area bounds, so positives in the high

severity imagery are marked as non-burned in the overlaid image. The final result is

shown in Figure 8 where the left image is high severity burn extent and the right image is

the overlaid image. The actual overlay image is grayscale. A color map was applied to it

for easier visualization.

20

 Due to the lack of specifications by the end user requirements, both the dilation

radius and the dilation radius were decided on based off of what looked best to the creator

of the project. Alterations to the erosion and dilation are easily made within the code.

Currently, the white ash is dilated with a structuring element with a radius of two, but

should the user requirements change, the radius could easily be changed. The program

was designed to always dilate the white ash in proportion to the erosion amount.

Figure 8: White Ash and Burn Area Overlay

21

Conclusion

This project has been successful in meeting many of its goals. Most notably, it

reads in an image raster and converts it to an image containing classification information,

makes a high severity map by eroding then dilating the white ash areas within the burn

area, overlays high severity burn areas onto the burn are imagery creating a final product

that adequately represents where the fire burned and with what severity. Several sections

of the project, though meeting the goals of the project, can be further enhanced to

produce higher quality results and it is recommended that further work be dine in these

areas. Additional focus should be placed on more accurately interpreting the classified

image to find burned areas and removing salt-and-pepper regions of images. Finally, as

mentioned before, successfully implementing Connected Components with Stats would

remove the sub-object sized positive and negative areas that are too small for the open

and close morphological operations to catch. Correctly implementing Connected

Components with Stats remains the portion of this project that will require the most effort

to include.

22

Future Work

The Connected Components with Stats section of the project could use the most

work. The code is close to completion; it just needs some debugging to fix it. The source

of the problem has been narrowed down, and with some effort, connected components

could become operational.

Identifying burn areas can be improved by taking into account canopy cover. As

mentioned previously, a fire can burn under a canopy, so the project could be improved

by determining if areas under canopies are burned or not based on if the area around the

canopy is burned or not. Because the aerial imagery’s view of under the canopy is

obscured, there is no way to be sure if it is burned or not, but an educated guess can be

made by observing the area around the canopy. If all the area around the tree is burned, it

is likely also burned under the canopy. Likewise, if all the area around the tree is not

burned, it is likely not burned under the canopy. It would be tricky to determine the burn

area under a canopy when there is a combination of burned and not burned around the

canopy, but a solution to that problem can be found upon further research. The additional

functionality would not be guaranteed to be completely accurate, but it would be more

accurate than classifying all canopies as unburned which is what is currently done.

 One last area of improvement is adjusting the resolution to better fit end user’s

needs. True, traditional methods of acquiring fire data are not high enough resolution to

get to as much information as drones, but using drones to attain the imagery likely creates

information with too high a resolution to be useful. The images that the FireMAP team is

working with are massive even for small fires where an orthomosaic of a 40 hectare (100

23

acre) scene flown at 60 meters containing approximately two billion pixels. If potential

end users want all the collected information and are willing to deal with the massive

storage requirement, there will be no problem, but they have requested that the project

have functionality implemented that automatically or manually adjusts the resolution of

the imagery to a resolution that is more manageable for the end user's needs.

Because the end user has never had the problem of too much information before,

they do not know what resolution would be best, but further research could be done to

choose a value or enable the end user to adjust the resolution to what they want for each

individual case.

24

Works Cited
Bowerman, M. (2017). Data Collection, Analysis, and Class Separability.

Gonzalez, R. C., & Woods, R. E. (2008). Digital Image Processing (Third ed.). Upper

Saddle River, NJ: Paerson Education, Inc.

Johnston, L. B. (2017). Detecting Burn Severity in Post Wildland Fire Imagery through

k-Dimensional Trees and k-Nearest Neighbours Machine Learning Algorithms.

Morphological Operations: An Overview. (1996, July 17). Retrieved March 30, 2017,

from http://www.inf.u-szeged.hu/ssip/1996/morpho/morphology.html

OpenCV. (2017, April 20). Retrieved from http://opencv.org/

Pix4D, 3.2. (n.d.). Retrieved from https://pix4d.com/

Richardson, P. J. (2017). Object Identification in Imagery Using Cluster Analysis.

25

Appendix A: Source Code

A.1 Source.cpp

//Denoising_v1.0.cpp
// Jon Hamilton

#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/photo.hpp"
#include "ImgManipulate.h"
#include <stdio.h>
#include <iostream> //std::ifstream
#include <fstream>
#include <ctime>

cv::Mat open(cv::Mat source, cv::Mat structElem);
cv::Mat close(cv::Mat source, cv::Mat structElem);

int main(int, char** argv)
{
 //Variables
 clock_t start;
 const int size = 3, //Erode + Dilate Amount
 posMin = 5000,
 negMin = 2000;

 cv::Mat src, burnArea, dst, disp,
 element = getStructuringElement(
 cv::MORPH_ELLIPSE,
 cv::Size(2 * size + 1, 2 * size + 1),
 cv::Point(size, size));
 start = clock();

 /// Load an image
 std::ifstream imgASCII("../../data/LowellDamASCII.txt");
 cv::String temp;
 std::string dummy;
 int rows, cols;

 // Read in Metadata
 imgASCII >> dummy;
 imgASCII >> cols; // NCols
 imgASCII >> dummy;
 imgASCII >> rows; // NRows
 imgASCII >> dummy;
 imgASCII >> dummy; // XLLCorner
 imgASCII >> dummy;
 imgASCII >> dummy; // YLLCorner
 imgASCII >> dummy;
 imgASCII >> dummy; // CellSize
 imgASCII >> dummy;

26

 imgASCII >> dummy; // NoData_Value

 // Convert roster to MAT
 src.create(rows, cols, CV_8U);
 for (int x = 0; x < rows; x++) {
 for (int y = 0; y < cols; y++) {
 int group;
 imgASCII >> group;
 src.at<uchar>(x, y) = group * 32;
 }
 }

 // Convert to output roster format
 cv::applyColorMap(src, disp, cv::COLORMAP_JET);
 imwrite("../../output/0 Original.jpg", disp);

 // Create binary image
 burnArea = binary(src);
 cv::applyColorMap(burnArea, disp, cv::COLORMAP_OCEAN);
 imwrite("../../output/1 Burn Area.jpg", disp);

 // Smooth binary image
 burnArea = open(burnArea, element);
 burnArea = close(burnArea, element);
 cv::applyColorMap(burnArea, disp, cv::COLORMAP_OCEAN);
 imwrite("../../output/2 Smooth Burn Area.jpg", disp);

 // Remove small islands of data
 //deleteIslands(burnArea, burnArea, posMin, negMin);
 //cv::applyColorMap(burnArea, disp, cv::COLORMAP_OCEAN);
 //imwrite("../../output/4 Islandless Burn Area.jpg", burnArea);

 // Add white ash to output
 cv::Mat highSeverity = whiteAsh(src, burnArea);
 dst = combine(burnArea, highSeverity);

 // Output Processed Image
 cv::applyColorMap(dst, disp, cv::COLORMAP_OCEAN);
 imwrite("../../output/5 Output.jpg", disp);
 return 0;
}

//**
//** Functions

cv::Mat open(cv::Mat img, cv::Mat structElem) {
 erode(img, img, structElem);
 dilate(img, img, structElem);
 return img;
}
cv::Mat close(cv::Mat img, cv::Mat structElem) {
 dilate(img, img, structElem);
 erode(img, img, structElem);
 return img;
}

27

A.2 ImgManipulate.h

#pragma once
#include "opencv2/highgui/highgui.hpp"

//void thicken(cv::Mat src, cv::Mat& dst);
//void hitmiss(cv::Mat src, // Source image, 8 bit single-channel matrix
// cv::Mat& dst, // Destination image
// cv::Mat& kernel); // Kernel. 1=foreground, -1=background, 0=don't
care
cv::Mat binary(cv::Mat src);
void deleteIslands(cv::Mat src, cv::Mat& dst, int posMin, int negMin);
cv::Mat whiteAsh(cv::Mat src, cv::Mat boundary);
cv::Mat combine(cv::Mat boundary, cv::Mat white);
bool matIsEqual(cv::Mat img1, cv::Mat img2);

28

A.3 imgManipulate.cpp

#include "ImgManipulate.h"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/photo.hpp"
#include <iostream>

/*
// Applies thickening morphological operation on src
// **Contemplated using this instead of the open and close operation
// **But decided not to because the added complecity was not worth the slightly
better output
void thicken(cv::Mat src, cv::Mat& dst)
{
 const int size = 1;
 cv::Mat temp,
 elmt = getStructuringElement(
 cv::MORPH_RECT,
 cv::Size(2 * size + 1, 2 * size + 1),
 cv::Point(size, size));
 cv::bitwise_not(src, dst); // Take complement of src

 //Set beginning shape of the structuring element

 // Thin the complement of src
 for (int sameCount = 0; sameCount <= 8; sameCount++) {
 hitmiss(dst, temp, elmt);
 if (!matIsEqual(dst, temp))
 sameCount = 0;
 dst = temp;

 // Rotate structuring element 45 degrees
 cv::Point2f elmt_center(elmt.cols / 2.0F, elmt.rows / 2.0F);
 cv::Mat rot_mat = cv::getRotationMatrix2D(elmt_center, 45, 1.0);
 cv::Mat dst;
 cv::warpAffine(elmt, dst, rot_mat, elmt.size());
 }
 cv::bitwise_not(dst, dst); // Complement thinned image

 // Post processing to remove outlier pixels
}
*/

/*
// Hit-or-miss transform function
// I didn't write this function. I found it online.
void hitmiss(cv::Mat src, cv::Mat& dst, cv::Mat& kernel) {
 CV_Assert(src.type() == CV_8U && src.channels() == 1);

 cv::Mat k1 = (kernel == 1) / 255;
 cv::Mat k2 = (kernel == -1) / 255;

 cv::normalize(src, src, 0, 1, cv::NORM_MINMAX);

29

 cv::Mat e1, e2;
 cv::erode(src, e1, k1);
 cv::erode(1 - src, e2, k2);

 dst = e1 & e2;
}
*/

// Turn image into a binary image
// 1-Burned, 0-Unburned
cv::Mat binary(cv::Mat src) {
 cv::Mat dst;
 dst.create(src.rows, src.cols, CV_8U);
 for (int x = 0; x < src.rows; x++) {
 for (int y = 0; y < src.cols; y++) {
 uint8_t assignment = src.at<uchar>(x,y);
 if (assignment <= 32) // Values below 32 are white ash
and black ash
 dst.at<uint8_t>(x, y) = 255;
 else
 dst.at<uint8_t>(x, y) = 0;
 }
 }
 return dst;
}

//**Did not get working. Error within ConnectedComponentsStats()
// Gets rid of islands of data that are
// smaller than (int) size and greyscale shade (uint8_t) color
void deleteIslands(cv::Mat src, cv::Mat& dst, int posMin, int negMin) {
 int size;
 cv::Mat stats, components, centroid,
 disp;

 components.create(src.rows, src.cols, CV_8U);
 dst = src;

 //***

 //* Get rid of islands of data smaller than posMin
 //***

 // dst: Input image
 // components: Output image
 // stats: Statistics array for each component
 // centroid: (x,y) coordinate array for each component
 // connection: 8 or 4 for 8-way or 4-way connectivity
 const int connection = 4;
 size = connectedComponentsWithStats(dst, components, stats, centroid,
connection);

 //cv::applyColorMap(components, disp, cv::COLORMAP_JET);
 imwrite("../../output/3 Burn Area Components.jpg", disp);

 std::cout << components.cols << ", " << components.rows << std::endl;

30

 // Cycle through all positive coneccted components and check size
 for (int label = 0; label < size; label++) {

 // Find if the connected component is too small
 if (stats.at<uint8_t>(label, cv::CC_STAT_AREA) < posMin) {
 int top = stats.at<uint8_t>(label, cv::CC_STAT_TOP),
 height = stats.at<uint8_t>(label, cv::CC_STAT_HEIGHT),
 left = stats.at<uint8_t>(label, cv::CC_STAT_LEFT),
 width = stats.at<uint8_t>(label, cv::CC_STAT_WIDTH),
 area = stats.at<uint8_t>(label, cv::CC_STAT_AREA);

 std::cout << "Component " << label << ": " << std::endl
 << "\tOrigin: " << left << ", " << top << std::endl
 << "\tBounds: " << width << ", " << height << std::endl
 << "\tArea: " << area << std::endl;

 // Look at area within bounds of component[label]
 for (int y = top; y <= top + height; y++)
 {
 for (int x = left; x <= left + width; x++)
 {
 //std::cout << (x - left) << ", " << (y - top)
<< std::endl;
 // Change pixels part of connected
component[label] to 0;
 int grouping = components.at<uint8_t>(x, y);
 if (grouping == label)
 dst.at<uint8_t>(x, y) = 0;
 }// for(x)
 if (y == top + height)
 system("PAUSE");
 }// for (y)
 std::cout << std::endl;
 }// if(small)
 }// for(label)

}

// Extracts the white ash out of an image
// and dilates it to match the actual area of the burned material
cv::Mat whiteAsh(cv::Mat src, cv::Mat boundary) {
 cv::Mat dst;
 dst.create(src.rows, src.cols, CV_8U);
 for (int x = 0; x < src.rows; x++) {
 for (int y = 0; y < src.cols; y++) {
 uint8_t pixel = src.at<uchar>(x, y);
 uint8_t burned = boundary.at<uchar>(x, y);
 // If the pixel is white ash in the sorce image
 // and within the burned area bounds,...
 if (pixel == 64 && burned == 255)
 dst.at<uint8_t>(x, y) = (uint8_t) 255;
 else
 dst.at<uint8_t>(x, y) = (uint8_t) 0;

31

 }
 }
 cv::imwrite("../../output/3 White Ash.jpg", dst);

 // Adjust variable "size" to change dilation amount
 int size = 2; // White ash dilation amount
 cv::Mat element = cv::getStructuringElement(
 cv::MORPH_ELLIPSE,
 cv::Size(size, size));
 cv::erode(dst, dst, element); // Get rid of too small white ash

 // Dilate remaining white ash to four times the original size
 size *= 8;
 element = cv::getStructuringElement(
 cv::MORPH_ELLIPSE,
 cv::Size(size, size));
 cv::dilate(dst, dst, element);

 cv::imwrite("../../output/4 White Ash Smoothed.jpg", dst);
 return dst;
}

// Combines the mid and high-severity burn area maps
// high severity only recorded within the mid severity bounds
cv::Mat combine(cv::Mat boundary, cv::Mat white)
{
 cv::Mat dst;
 dst.create(boundary.rows, boundary.cols, CV_8U);
 for (int x = 0; x < boundary.rows; x++) {
 for (int y = 0; y < boundary.cols; y++) {
 uint8_t burned = boundary.at<uchar>(x, y);
 if (burned == 0)
 dst.at<uint8_t>(x, y) = 0;
 else {
 uint8_t severity = white.at<uchar>(x, y);
 if (severity == 0)
 dst.at<uint8_t>(x, y) = 127;
 else
 dst.at<uint8_t>(x, y) = 255;
 }
 }
 }
 return dst;
}

// Compares two Mats to see if they are the same images
// Assumes the Mats are the same size and not empty
bool matIsEqual(cv::Mat img1, cv::Mat img2) {
 cv::Mat Mdiff;
 cv::compare(img1, img2, Mdiff, cv::CMP_NE);
 int idiff = cv::countNonZero(Mdiff);
 return idiff == 0;
}

