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Abstract 

 

A kNN Classification using KD Trees 

JOHNSTON, LLEWELLYN (Department of Mathematics and Computer 

Science), HAMILTON, DALE A. (Department of Mathematics and Computer 

Science) 

 

This is a system for analyzing post-fire imagery to determine wildland fire severity. The 

system is written for the FireMAP project. It is written in C++ and C using the open 

source image processing library OpenCV. The system primarily is comprised of a k-

Dimensional binary tree, for storing training data, along with a k-Nearest Neighbors 

algorithm to quickly classify imagery based on the training data. The algorithm utilizes 

parallel processing to fully utilize the CPU greatly increase the classification speed. Most 

of the system is written in house to provide a unique and modifiable algorithm 

implementation for use by the FireMAP project. This effort is important to the FireMAP 

project because it provides the ability to automate the severity determination process that 

would previously take weeks for a Burn Area Emergency Response (BAER) team to do 

now takes several minutes or several seconds. So, the solution provided by this project is 

cheaper, faster, requires less manpower, and is overall a safer approach to the issue of 

burn severity analysis. Several areas of research and work were not included in this 

project and will require further attention. These areas are object based analysis of 

imagery, further optimization and training for the classifier, more robust system testing, 

and full integration of the classifier into the full FireMAP project. 
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Project Background 

The Fire Monitoring and Assessment Platform (FireMAP) is a large research 

project headed up by Dale Hamilton for his Ph.D. research. The purpose of FireMAP is to 

address wildland fire analysis and mapping which are both primarily done by hand and by 

Burn Area Emergency Response (BAER) teams. This work is time consuming, expensive, 

and potentially dangerous with team members working in a recently active fire zone with 

possible hotspots and unstable wildland. FireMAP proposes to perform the data collection 

and analysis through Unmanned Aerial Systems (UAS) with attached high definition 

cameras. Actionable knowledge is extracted from the imagery.  

FireMAP utilizes machine learning classifiers to classify all of the pixels within an 

image based on a pixels’ spectral values, the levels of red, green, and blue present in the 

pixel, in reference to previously classified data called training data. Machine Learning 

classification methods are applicable to far more than just wildland fire imagery. One field 

of interest that has been addressed previously in a project by Joshua Benton attempted to 

classify and analyze prostate cancer in histological imagery. His approach utilized 

MATLAB as his working base. FireMAP already had an implementation of a k-Nearest 

Neighbors (kNN) algorithm which provided automated analysis of post fire imagery but it 

heavily relied on an open source library called OpenCV which has several key features 

already developed. This resulted in fairly slow classification times and the lack of control 

of the code and the overall process. 

The purpose of this project is to improve on the previous methods of classification, 

MATLAB and the OpenCV dependent FireMAP kNN. The main improvements this 

project aimed to accomplish was to develop a customized kNN algorithm using a k-
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Dimensional tree and to improve on current classification speeds. This improved classifier 

is then to be applied to both post fire imagery and to prostate cancer slides to test its 

effectiveness. The last part of the project was to implement object based classification 

using the work of Patrick Richardson, an NNU senior working on the FireMAP project. 

 

Project Overview 

 This project required the creation and implementation of a C++ implementation of 

a KD-Tree and a kNN Algorithm. A k-Nearest Neighbors algorithm uses training data 

which is points of data that have been assigned a classification by a user prior to the 

operation of the algorithm. These pieces of training data are then used to determine the 

most likely classification of a new data point based on their spatial proximity to the new 

piece of data. Figure 1 provides a visualization of the basic workings of a kNN algorithm 

within a two dimensional space. In Figure 1 the kNN algorithm is running on a k of five, 

meaning that it uses the five closest points of training data to determine the most likely 

classification of the new data point – the black point. In this case the new piece of data is 

most likely blue because three of the five closest data points are blue. 

 

Figure 1 – 2D kNN Algorithm 
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 For the kNN to work, the training data has to be stored in a manner that is quick to 

access and maintains the spatial aspects of the data. The approach taken in this project is 

to store the data in a k-Dimensional tree. Though there are other data structures available 

to use with the kNN algorithm the k-D tree is a commonly used data structure and is one 

of the most reliable methods for storing spatial data, which is data that deals with multiple 

dimensions (Otair 98).  

Binary trees are a common method for storing data because they provide very fast 

access to data and are flexible in their set up and active usage. Binary trees work by 

repeatedly dividing the desired data in half and sorting it based on a midpoint – all data 

less than the midpoint is placed on the left, all data greater is placed on the right. This 

process is repeated until you are dealing with single points. Figure 2 gives a visual 

representation of a simple binary tree. 

 

Figure 2 – Binary Tree 

For this project, however, binary trees do not work because the subject matter has multiple 

dimensions that need to be considered – the spectral values red, green, blue, infrared, in 
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addition to a variety of texture metrics are all examples of dimensions being considered by 

FireMAP. Additionally, there is the possibility that more dimensions will be considered in 

the future work of the project. So, the storage system used had to be able to handle multiple 

dimensions. A basic binary tree cannot handle this requirement. To fulfill this requirements 

a k-Dimensional (k-D) tree was implemented. A k-D tree is similar to a binary tree in its 

underlying functionality and form but it differs from a binary tree because the dimension 

that the data is sorted on changes depending on which level of the tree you are on. The first 

level will be sorted based on your first dimension, your second level will be sorted on your 

second dimension and so on until you have sorted on each of your dimensions at which 

point your start again with the first dimension (Moore 62-64). Figure 3 gives a 

representation of this process with two dimensions: x and y. 

 

Figure 3 – k-D Tree 

The k-D Tree and kNN are the two main structures that are used within this project. The 

k-D tree stores the training data and the kNN algorithm uses the stored data to classify 

unknown data. 

 With the k-D tree established it is now possible for the kNN to utilize it for the 

classification process. Visually the kNN looks at the closest training data to determine the 
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classification of a new data point but the process behind that is more complicated as it 

requires moving through the k-D tree to find those training points. 

PixelNode* currentNode = head; 
… 
… 
bool bottom = false;  
… 
… 

 while (!bottom) 
 { 

if (newObjectNode[kLvl] < currentNode->getValue(kLvl) && currentNode-
>getLeft() != 0) 

 { 
  if (currentNode->getLeft() != 0) 
  { 
   currentNode = currentNode->getLeft(); 
   … 
  } 
  else 
   bottom = true; 
 } 
 else 
 { 
  if (currentNode->getRight() != 0) 
  { 
   currentNode = currentNode->getRight(); 
   prevPath = 1; 
  } 
  else 
   bottom = true; 
 } 
 kLvl = (kLvl + 1) % numberOfValues; 
} 
… 
… 

Figure 4 – Initial Traversal to Bottom of the k-D Tree 

To begin the process the kNN traverses the tree to the bottom of the k-D Tree. Figure 4 

shows this process. The starting point (currentNode) is set to the top of the tree (head). 

From there the algorithm compares the value of the new data to the one stored in the tree 

and moves left or right depending on if the value is less than or greater than/equal to 

accordingly. This process is then repeated, using the next dimension as explained 

previously, until the training node being considered is at the bottom of the tree. The 

indicator that the bottom has been reached is that the necessary path is not populated – 

which means that the path is 0 rather than another node.  
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 while (!pixelStack.empty()) 
 { 
  currentNode = pixelStack.top(); 
  pixelStack.pop(); 
 
  prevPath = previousPath.top(); 
  previousPath.pop(); 
 
  distance = currentNode->getDistance(newObjectNode); 
 
  if (neighbourList->isNotFull() || distance < neighbourList->getMax()) 
  { 
   neighbourList->insert(currentNode, distance); 
   … 
   childStack.push(child) //PUSH THE NEW CHILD ONTO THE CHILDSTACKS 

… 
   //TRAVERSE THE ENTIRE SUBRANCH LOOKING FOR CLOSER POINTS 
   while (!childStack.empty()) 
   { 
    currentNode = childStack.top(); 
    childStack.pop(); 
    if (currentNode != 0) 
    { 

distance = currentNode-
>getDistance(newObjectNode); 

     neighbourList->insert(currentNode, distance); 
 
     childStack.push(currentNode->getRight()); 
     childStack.push(currentNode->getLeft()); 
    } 
   } 
  } 
 } 

Figure 5 – Reverse Traversal of Tree to Find Possible Other Neighbors 

The next part of the kNN is to backtrack from the bottom of the tree and check the parent 

nodes and branches for other neighbors and possibly better neighbors. Figure 5 shows this 

process. This section of the code loops until all the desired nodes within the k-D tree have 

been checked. The desired nodes are stored in pixelStack. The algorithm moves from the 

bottom of the tree to look at the parent node, which is the training data point directly above 

the current one within the tree. If the kNN has not identified the proper number of neighbors 

to the data point then the parent is added onto the list of neighbors (neighbourList) or if the 

parent node is closer in distance to the data point than the current least likely neighbor then 

the parent replaces that neighbor in the list. In both cases the parent node is added to the 

neighbor list then the kNN checks all the children of that parent node. This means that the 
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kNN looks at all of the nodes bellow the parent node to see if they are possible closest 

neighbors to the data point being classified. Only one side has to be checked, either left or 

right, as the previous side has been checked before looking at the parent node. The process 

of backtracking and checking parents and other branches continues until the end of the 

kNN. If neither of the conditions are met at any point, the parent node is farther away than 

the farthest current neighbor and the kNN has identified the proper number of neighbors, 

then no actions are taken and the kNN is complete. This new list of neighbors is then used 

to assign a class to the new data point being classified (Lavrenko). 

 At this point both the k-D tree and the kNN algorithm are created and function as 

expected. Both are fully customizable in-house solutions and both are no longer heavily 

tied to OpenCV, as the previous edition of the project was. With the k-D Tree and kNN 

established the next steps in the project are to optimize the algorithm to run as quickly as 

possible and to begin classifying imagery – which involves training data selection and 

refinement of the kNN algorithm. 

 There are several steps in the optimization of the system. The main steps are the 

balancing of the k-D tree, the implementation of a custom stack to avoid recurrence and 

the use of the default system stack, and the parallelization of the kNN process. One issue 

with data trees is that they can become very imbalanced to the point that they are not 

providing much improvement in run times over a straight linear approach. What this means 

is that the tree can be strongly skewed to one side based on where the data is divided. One 

side of the data tree could be much longer than the other side which means that getting at 

information on the longer side takes longer which leads to an overall slowdown of the 

system. Balancing a normal binary tree is possible during run time but balancing a k-D 
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tree, because it deals with multiple dimensions, is difficult and sometimes almost 

impossible. To solve this issue the k-D tree first reads in all of the data and sorts it based 

on the first dimension, it then sorts the data on the two halves based on the second 

dimension, and so on (Brown 51-55). This is done before loading all the data into the tree 

and it allows the tree to be created in a balanced form so that each data access is as quick 

as possible. 

 In order to accomplish all of the prior described sorting there is generally a large 

amount of recurrence, which is where one section of the program is called multiple times 

by itself to accomplish a task. The general method for doing this results in slow run times 

as each time the part of the program is called all the information currently held by the 

program has to be stored into the system stack to be restored at a later point. This process 

is rather slow and has lots of overhead. To address this a custom stack was created which 

has faster store and load speeds than the system stack and erases the need for recurrence 

within the program. Instead of a section of the program calling itself now instead the section 

of the program will loop several times until the stack is empty. This optimization is 

primarily used when balancing the data for the creation of the tree as there is an enormous 

amount of sorting that has to happen here but it is also used in the kNN classification 

process described previously when doing the backtracking within the k-D tree. 

stack<int> qSortStack; 
 

 int left; 
 int right; 
 int kLvl; 
 int midPoint; 
 
 qSortStack.push(0); 
 qSortStack.push(objectNodeVector.size() - 1); 
 qSortStack.push(0); 
 do 
 { 
  kLvl = qSortStack.top(); 
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  qSortStack.pop(); 
  right = qSortStack.top(); 
  qSortStack.pop(); 
  left = qSortStack.top(); 
  qSortStack.pop(); 
  … 
  … 
 } while (!qSortStack.empty()); 

Figure 6 – Custom Stack 

Figure 6 provides a brief look into how the custom stack is implemented and works within 

the sorting function. The variables left, right, kLvl, and midpoint are important to the sort 

– in this case quick sort is being used. The stack is initialized with the default values and 

then within the do-while loop the required information is pulled from the stack, the sort is 

completed and the information for the left and right sections are then pushed onto the stack. 

This allows the multi-level sort that balances the k-D tree to run as quickly as possible. 

 The last major optimization is the parallelization of the classification process. The 

kNN algorithm is a pixel based classification, classifying each pixel individually within the 

desired image. In the case of this project the desired images are often orthomosaics of large 

fires – these are images that are composed of multiple smaller images stitched together to 

display a larger region than visible in a single image. The orthomosaics are very large, the 

Kane Fire orthomosaic (Figure 7) is 18725 pixels by 14302 pixels. This means that there 

are 267,804,950 pixels to classify. The run time of this can be enormous especially when 

you can only classify one pixel at a time. This is where parallel processing becomes very 

useful. Instead of handling one pixel at a time the program can process multiple pixels at a 

time which reduces the run time enormously from minutes to seconds and hours to minutes. 

Within this project each column of the picture each row of the image is handled separately 

in parallel. What this means is that separate rows are being classified simultaneously. This 

does cause some issue, however, as it makes it possible to override information being dealt 
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with by a separate parallel process. The information being written in this section are the 

classifications for the pixel so to handle this issue the program utilizes a mutex lock to 

control access to the output variable between parallel processes. 

mutex threadLock; 
int pixelVal; 
 
parallel_for(0, inputImage.rows, 1, [&](int row)  
//Parallel For loop cycling through each of the rows 
{ 
 string className;  

for (int col = 0; col < inputImage.cols; col++)  
//For loop cycling through each of the columns 

 { 
  … 
  Vec3b& bgr = inputImage.at<Vec3b>(row, col); 
 
  … 

… 
 
  pixelTree->kNearestNeighbourNodes(heap, newPixel); 
 
  pixelVal = voting(heap, neighbourCount); 
    
  threadLock.lock(); 
 
  outputImage.setPixelClasses(row, col, pixelVal); 
 
  threadLock.unlock(); 
  … 
 } 
}); 

Figure 7 – Parallelization and Mutex Locks 

Figure 7 outlines the parallel process used within the project. The mutex lock is 

established as threadLock prior to the parallel for loop. The parallel for loop is 

established to run on each row within the image being classified and hands off each loop 

to a separate processor as they become available on the computer running the kNN 

program. Each of these parallel loops then have a for loop to analyze each pixel within 

the row and assign a class to each pixel using the kNearestNeighbourNodes function. The 

usage mutex lock is seen near the end of the figure where the mutex locks the parallel 

loops before setting the pixel class for the pixel with the setPixelClasses function. The 

mutex lock is then released so that the other parallel processes can write set the classes 
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for their pixels. The parallelization is the main optimization carried out and is the main 

reason for the enormous speed improvement over previous iterations of the kNN 

classifier. 

 The main components of the project are the kNN algorithm and the k-D tree. The 

k-D tree is necessary for the kNN algorithm to function properly and both components 

have been written for this project. Both the k-D tree and kNN algorithm are optimized to 

be as efficient as possible which allows for very quick runtimes and efficient use of 

resources. This section has given the overview of the project’s components and what has 

been accomplished by the project. 

 

Testing and Results 

 The next step to the process is to actually perform the classifications and create 

training data and resulting imagery. Because this individual project is part of the larger 

FireMAP project selecting the training data to use was not part of the functionality of this 

project but it will be covered briefly for the purpose of explaining the process of 

obtaining resulting imagery. All of the following results were obtained using a Windows 

8.1 machine with an Intel Quad Core i7-3630QM CPU, 12 GB DDR3 RAM, and 4GB 

Nvidia GeForce GT650M. 
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Figure 8 – Reynolds Creek Prescribed Burn Base Image  

Figure 4 shows one of the three primary fires used for the testing of the kNN classifier. It 

shows the base image prior to any training data is extracted and prior to any of the 

classification. Within this image, there are two main burn regions visible surrounded by 

dry unburnt regions. 
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Figure 9 - Reynolds Creek Prescribed Burn Base Image with Training Data Sections, Green is Unburn, Blue is Burn 

Figure 5 shows the training data selection process. The blue circles are labelled as burnt 

regions. The green circles are labelled as unburnt regions. Both of these groupings of 

regions are exported as training data with the appropriate labels to be classified. 
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Figure 10 – Reynolds Creek Burn Post Classification with 5 Neighbors and an 18 Second Runtime 

The training data previously generated is loaded into the k-D tree and balanced. The 

Reynolds Creek image is loaded into the kNN application as the input image and the 

kNN runs through the image classifying each pixel. Figure 6 shows the resulting image 

from the kNN run with a neighbor count of 5. There are a total of 12,000,000 pixels 

within this image. The entire classification process, including the construction of the k-D 

tree, took around 18 seconds. 
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Figure 11 – Kane Burn Orthomosaic Base Image 

Figure 7 show the largest image used to test the kNN project. It shows the Kane Fire 

orthomosaic which is 18725 pixels by 14302 pixels. The Kane Fire was a wildland fire 

over the summer, 2016 in the Owyhee Mountains in southern Idaho. Multiple separate 

images were taken using a UAS and the images are stitched together using a third party 

application, called Pix4D, to create one larger image of the entire fire region. For the 

classification of this image the training data was pulled from the central burnt section and 

from the top right unburnt regions. Using the same methods as used in Figure 5. 
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Figure 12 – Kane Burn Orthomosaic Post Classification, Red is Unburnt, Black is Burnt, 4 Minute 52 Second Runtime 

Figure 8 shows the resulting classification of the Kane Fire imagery. The red represents 

unburnt pixels and the black is burnt pixels. The entire classification of this image took 4 

minutes and 52 seconds including the construction of the k-D tree. This resulting image 

and Figure 6 both show an issue faced in the process.  

Both of the images have speckling and noise which is false classification. This 

means that there is a pixelization effect visible within the unburnt regions due to data 

points being falsely classified as burnt. There are two mains ways of handling this issue. 

The first is to refine the training data used. A big difficulty with assisted machine 

learning algorithms, like the kNN algorithm, is the selection of training data. The second 

main way of handling the issue is to perform data cleanup through processes like blurs or 

morphology – which is handled by a different section of the FireMAP project. 
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Future Work 

 With the limited time available for the development of this project and it being 

tied to the larger FireMAP project there were some limitations placed on what could be 

accomplished. The largest section of the project that was not completed is object based 

classification. An original objective was also to implement the object based image 

classification, where spatio-spectral clusters are classified as a group. This objective was 

not accomplished. A vital part of that process was developed in a separate section of the 

FireMAP project and proved to be far more difficult than first anticipated. So, it was not 

completed in time to be used with the kNN algorithm. Enhancement of the kNN classifier 

to enable object based classification is an important avenue to pursue in the future. The 

resulting fire imagery is fairly accurate but the resulting prostate cancer imagery is not 

very accurate and that is because the processes are fairly dissimilar. Fire is able to be 

analyzed pretty accurately based on the color spectrum and other dimensions, like 

texture. Prostate cancer analysis is more complicated and quite a bit of it is dependent on 

proximity of different objects. So, performing classification on prostate cancer without 

the object oriented classification methods proved fairly ineffective. This means that 

another goal for future work is to work more closely with prostate cancer imagery with 

the object oriented classification mentioned previously. 

 Overall the core of the project was completed. The kNN algorithm was created to 

function with a flexible number of dimensions. The k-D tree was created to function with 

the same dimensional flexibility. Results were obtained and proved to be fairly accurate. 

However, those results can be improved especially through better training data selection. 

The development of more accurate training data is another goal to be pursued in the 
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future of this project. Additionally, more testing is necessary with more rigorous testing 

parameters to develop a more accurate assessment of the efficiency of this classifier. 

There are several other dimensions that should be considered in the future like texture 

and shape, which will likely improve the prostate cancer results tremendously. 

 

Conclusion 

 In conclusion, the overall project was successful. Despite there being fairly 

extensive future work to be taken and possible improvements on the system a functional 

kNN algorithm and k-D tree were developed. A far greater understanding of the 

algorithms and of machine learning overall was gained through the process of the project. 

Additionally a greater understanding of working within a larger project and with a group 

of other developers were also gained. This project has laid the initial foundation for the 

custom kNN for the FireMAP project and created a very fast and optimized system. 

 

  



19 

References 

Benton, Joshua. Detecting Prostate Cancer in Histological Images via Image  

Segmentation and Supervised Machine Learning. Thesis. Northwest Nazarene 

University, 2016. Nampa: NNU, 2016. Print. 

Brown, R.A. (2015). Building a Balanced k-d Tree in O(kn log n) Time. Journal of  

 Computer Graphics Techniques, 4(1). 

Gupta, Sachin. "Iterative traversals for Binary Trees." HackerEarth. N.p., n.d. Web. 01  

Apr. 2017. 

Hamilton, Dale (2015). Prototyping machine learning classifiers for mapping wildland  

fire extent and severity. Northwest Nazarene University, Nampa, ID. 

"Intuitive Classification using KNN and Python." ŷhat | Blog. N.p., 25 July 2013. Web.  

01 Apr. 2017. 

Lavrenko, Victor. “kNN. 15 K-d tree algorithm.” Youtube. University of Edinburgh. 15  

Sep 2015. Web. 

Moore, C.W. (1991). An Introductory Tutorial on KD-Trees. Efficient Memory-based  

 Learning for Robot Control. 

"OpenDSA: All Modules TODO List." 8.2. k-d Trees. OpenDSA, n.d. Web. 01 Apr.  

2017. 

Otair, Mohammed, Dr. "Approximate K-Nearest Neighbour Based Spatial Clustering  

Using K-D Tree." International Journal of Database Management Systems 5.1 

(2013): 97-108. Web. 

  



20 

Appendix 

k-D Tree 

PixelTree.h 

#include <string> 
#include <vector> 
#include "BPQHeap.h" 
 
using namespace std; 
 
#ifndef PIXEL_LINKED_TREE 
#define PIXEL_LINKED_TREE 
 
/************************************************************************************** 
 CLASS: PixelNode           
                 
 DEFINITION OF THE PIXELNODE CLASS WHICH WILL MAKE UP THE KDTREE AND BE USED    
 IN THE KNN ALGORITHM              
 The basic premise is that each of the spectral values of the pixels are stored  
 in the PixelNode which will then be used to run the kNN Algorithm. 
 
 Llewellyn Johnston - May 2016         
**************************************************************************************/ 
 
class PixelNode 
{ 
private: 
 PixelNode* left; 
 PixelNode* right; 
 PixelNode* parent; 
 int pxCount = 1; //used for pruning, if exact pixels exist 
 string nodeType; 
 int kLvl = 0; 
 vector<float> PixelValues; 
 
public: 
 PixelNode(vector<float>, string, int, int); 
 PixelNode(vector<float>, string, int, int, PixelNode*); //Overloaded  

if Parent is 
known 

 
 void setLeft(PixelNode* newLeft) { left = newLeft; } 
 void setRight(PixelNode* newRight) { right = newRight; } 
 void setParent(PixelNode* newParent) { parent = newParent; } 
 void incrementCount() { pxCount++; } 
 
 PixelNode* getLeft() { return left; } 
 PixelNode* getRight() { return right; } 
 PixelNode* getParent() { return parent; } 
 string getType() { return nodeType; } 
 bool isMatch(PixelNode*); 
 double getValue(int k) { return PixelValues[k]; } 
 int getCount() { return pxCount; } 
 float getDistance(vector<float>); 
}; 
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/************************************************************************************** 
 CLASS: PixelTree          
 
 DEFINITION OF THE PIXELTREE CLASS WHICH WILL BALANCE THE INPUTS AND BE USED IN  
 THE KNN ALGORITHM   
 Basically, it has the public function balanceVector() which is a two step  
 recursive function that balances the users input training data vector so that  
 the tree created from it is balanced an is functional on O(log(n)). This is the  
 most lengthy part of the tree creation though, balanced vector is then to be  
 saved so that this process can be skipped next time the user uses the training  
 data. Additionally, there is the pruneBalanceVector which will prune the  
 training data (get rid of duplicate entries and increment the counters for those  
 pixels) and then use this pruned vector to construct the tree. 
 
 Llewellyn Johnston - May 2016 
**************************************************************************************/ 
 
class PixelTree 
{ 
private: 
 PixelNode* head; 
 int numberOfValues = 0; 
 //Implement a quicksort function (kind of) to construct the tree 
 void quickPixelSort(vector<PixelNode*>&, int, int, int); 
 
public: 
 void printTypes(PixelNode*); 
 PixelTree(int K) 
 { 
  head = 0; 
  numberOfValues = K; 
 } 
 ~PixelTree(); 
 
 PixelNode* getHead() { return head; } 
 int isEmpty() { return head == 0; } 
 void setValueCount(int newCount) { numberOfValues = newCount; } 
 int getValueCount() { return numberOfValues; } 
 void deleteNode(PixelNode*, bool); 
 
 void createPrunedVector(vector<PixelNode*>&, PixelNode*); 
 void createPruningTree(vector<PixelNode*>&, int); 
 vector<PixelNode*> pruneBalanceVector(vector<PixelNode*>&, int); 
 void balanceVector(vector<PixelNode*>&); 
 void constructTree(vector<PixelNode*>&, PixelNode*, int, int, int = 0); 
 void kNearestNeighbourNodes(BPQHeap*, vector<float>); 
}; 
 
#endif 

PixelTree.cpp 

#include "PixelTree.h" 
#include <iostream> 
#include <stack> 
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/**************************************************************************************
 NAME: PixelNode (no parent)       
 CLASS: PixelNode         
 
 CONSTRUCTOR FOR THE PIXELNODE CLASS, THIS IS THE OVERLOADED VERSION THAT DOES  
 NOT TAKE A PARENT NODE  
 Takes a vector of ObjectValues and puts those into the PixelNode's PixelValues  
 vector, sets the kLvl and the node type - the classificiation like burn, white  
 ash, black ash, etc.        
 
 Llewellyn Johnston - May 2016         
**************************************************************************************/ 
 
PixelNode::PixelNode(vector<float> nObjectValues, string type, int level, int kSize) 
{ 
 nodeType = type; //Set the node type 
 kLvl = level;  //set the branch level for the object 
 for (int j = 0; j < kSize; j++) //Place all of the pathing information into  

the object class 
 { 
  PixelValues.push_back(nObjectValues[j]); 
 } 
} 
 
/************************************************************************************** 
 NAME: PixelNode (with parent)        
 CLASS: PixelNode          
 
 CONSTRUCTOR FOR THE PIXELNODE CLASS, THIS IS THE OVERLOADED VERSION THAT DOES  
 TAKE A PARENT NODE 
 Takes a vector of ObjectValues and puts those into the PixelNode's PixelValues  
 vector, sets the kLvl and the node type - the classificiation like burn, white  
 ash, black ash, etc. Also sets the parent ptr. 
 
 Llewellyn Johnston - May 2016         
**************************************************************************************/ 
 
PixelNode::PixelNode(vector<float> nObjectValues, string type, int level, int kSize, 
PixelNode* nParent) 
{ 
 nodeType = type; //Set the node type 
 kLvl = level;  //set the branch level for the object 
 for (int j = 0; j < kSize; j++) //Place all of the attribute values into  

the object class 
 { 
  PixelValues.push_back(nObjectValues[j]); 
 } 
 parent = nParent; 
} 
 
/************************************************************************************** 
 NAME: getDistance         
 CLASS: PixelNode         
 
 CALCULATES THE EUCLIDIAN DISTANCE OF A GIVEN NODE BASED ON THE NODE ITSELF AND  
 THE PARAMETER NODE         
 
 Llewellyn Johnston - May 2016 
**************************************************************************************/ 
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float PixelNode::getDistance(vector<float> newPixelNode) 
{ 
 float distance = 0; 
 for (int i = 0; i < PixelValues.size(); i++) 
 { 
  distance += pow(newPixelNode[i] - PixelValues[i], 2); 
 } 
 return distance; 
} 
 
/************************************************************************************** 
 NAME: isMatch  
 CLASS: PixelNode          
 
 COMPARES THE PIXELVALUES OF THE COMPARENODE AGAINST THOSE OF THE CURRENT NODE TO  
 CHECK IF EXACT MATCH 
 If they are an exact match then returns false, otherwise will return true.  
 
 Llewellyn Johnston - May 2016 
**************************************************************************************/ 
 
bool PixelNode::isMatch(PixelNode* compareNode) 
{ 
 bool match = true; 
 for (int i = 0; i < PixelValues.size(); i++) 
 { 
  if (compareNode->getValue(i) != PixelValues[i]) 
  { 
   match = false; 
   break; 
  } 
 } 
 if (match == true && compareNode->getType() != nodeType) 
  match = false; 
 return match; 
} 
 
/************************************************************************************** 
 NAME: deleteNode          
 CLASS: PixelTree 
 
 RECURSIVE FUNCTION THAT DELETES THE PROVIDED NODE AND ALL OF ITS CHILD (AND  
 GRAN-KIDS AND SO ON)   
 Checks to see if the node has children, if it does then the function is called  
 on those children, after that the node is deleted and set to 0. If the node is  
 the initial node and it has a parent (meaning that it is not the head) its  
 parent's child node that corresponds is set to 0. 
 
 Llewellyn Johnston - May 2016  
**************************************************************************************/ 
 
void PixelTree::deleteNode(PixelNode* nodeToDelete, bool initial = 1) 
{ 
 if (nodeToDelete->getLeft() != 0) 
 { 
  deleteNode(nodeToDelete->getLeft(), 0); 
 } 
 if (nodeToDelete->getRight() != 0) 
 { 
  deleteNode(nodeToDelete->getRight(), 0); 
 } 



24 

 if (initial == 1 && nodeToDelete->getParent() != 0) 
 { 
  if (nodeToDelete->getParent()->getLeft() == nodeToDelete) 
   nodeToDelete->getParent()->setLeft(0); 
  else if (nodeToDelete->getParent()->getRight() == nodeToDelete) 
   nodeToDelete->getParent()->setRight(0); 
 } 
 delete nodeToDelete; 
 nodeToDelete = 0; 
} 
 
/************************************************************************************** 
 NAME: ~PixelTree (deconstructor)       
 CLASS: PixelTree          
 
 THE DECONSTRUCTOR FOR THE PIXELTREE CLASS      
 Calls the deleteNode function (which deletes all child nodes of the provided  
 node) on the tree head 
 
 Llewellyn Johnston - May 2016 
**************************************************************************************/ 
 
 
PixelTree::~PixelTree() 
{ 
 deleteNode(head); 
} 
 
/************************************************************************************** 
 NAME: quickPixelSort 
 CLASS: PixelTree 
 
 QUICK SORT FUNCTION FOR SORTING THE PIXEL NODES IN THE VECTOR BASED ON THEIR  
 DEFINED DIMENSION (KLVL) Functions off of the generic quicksort principle,  
 create a pivot point and swap around based on that then recursively sort the two  
 "halves" based on that pivot point. Only unique functionality is that it  

performs the quicksort based on the provided kLvl. 
 
 Llewellyn Johnston - May 2016        
**************************************************************************************/ 
 
 
void PixelTree::quickPixelSort(vector<PixelNode*> &pixelNodeVector, int left, int 
right, int kLvl) 
{ 
 stack<int> qSortStack; 
 
 int midPoint; 
 int i, j; //counters for the quicksort 
 PixelNode* temp; 
 float pivot; 
 
 qSortStack.push(left); 
 qSortStack.push(right); 
 
 do 
 { 
  right = qSortStack.top(); 
  qSortStack.pop(); 
  left = qSortStack.top(); 
  qSortStack.pop(); 
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  midPoint = ((left + right) / 2); 
  i = left;  
  j = right; 
  pivot = pixelNodeVector[midPoint]->getValue(kLvl); 
   
  while (i <= j) 
  { 
   while (pixelNodeVector[i]->getValue(kLvl) < pivot) 
    i++; 
   while (pixelNodeVector[j]->getValue(kLvl) > pivot) 
    j--; 
   if (i <= j) 
   { 
    temp = pixelNodeVector[i]; 
    pixelNodeVector[i] = pixelNodeVector[j]; 
    pixelNodeVector[j] = temp; 
    i++; 
    j--; 
   } 
  } 
 
  if (left < j) 
  { 
   qSortStack.push(left); 
   qSortStack.push(j); 
  } 
  if (right > i) 
  { 
   qSortStack.push(i); 
   qSortStack.push(right); 
  } 
 } while (!qSortStack.empty()); 
} 
 
/************************************************************************************** 
 NAME: balanceVector         
 CLASS: PixelTree         
 
 RECURSIVE FUNCTION THAT CALLS QUICKPIXELSORT TO SORT CHUNKS OF THE VECTOR BASED  
 ON THE KLVL 
 Kind of works like a smaller quicksort except it does not actually move anything  
 around. It calls the quickPixelSort() function to sort the chunks of the vector  
 before calling the function again with a new kLvl and with the two halves of the 
 now "sorted" vector. The purpose is to organize the vector so that it can be  
 easily used to construct the tree and to be able to store the organized data so 
 that you can avoid having to do this slow sort again later on. Additionally the 
 midpoint is decremented until the kLvl values of the midpoint and its previous 
 do not match in order to properly sort with < on the left and >= on the right. 
 
 Llewellyn Johnston - May 2016    
**************************************************************************************/ 
 
void PixelTree::balanceVector(vector<PixelNode*> &objectNodeVector) 
{ 
 stack<int> qSortStack; 
  
 int left; 
 int right; 
 int kLvl; 
 int midPoint; 
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 qSortStack.push(0); 
 qSortStack.push(objectNodeVector.size() - 1); 
 qSortStack.push(0); 
 
 do 
 { 
  kLvl = qSortStack.top(); 
  qSortStack.pop(); 
  right = qSortStack.top(); 
  qSortStack.pop(); 
  left = qSortStack.top(); 
  qSortStack.pop(); 
 
  if (left < right) 
  { 
   midPoint = ((left + right) / 2); 
   kLvl = kLvl % numberOfValues; 
 
   quickPixelSort(objectNodeVector, left, right, kLvl); 
 

while (midPoint > left + 1 && objectNodeVector[midPoint]-
>getValue(kLvl) == objectNodeVector[midPoint - 1]-
>getValue(kLvl)) 

   { 
    midPoint--; 
   } 
 
   kLvl++; 
   qSortStack.push(left); 
   qSortStack.push(midPoint - 1); 
   qSortStack.push(kLvl); 
   qSortStack.push(midPoint + 1); 
   qSortStack.push(right); 
   qSortStack.push(kLvl); 
  } 
 } while (!qSortStack.empty()); 
} 
 
/************************************************************************************** 
 NAME: constructTree 
 CLASS: PixelTree          
 
 RECURSIVE FUNCTION THAT CONSTRUCTS THE PIXEL TREE BASED ON THE PROVIDED  
 PIXELNODE POINTER VECTOR 
 Additionally, the construction decrements the midpoint in order to keep all >=  
 values to the right of the midpoint. This means that all values < the current  
 node's kLvl value go to the left, all >= go to the right. 
 
 Llewellyn Johnston - May 2016 
**************************************************************************************/ 
 
void PixelTree::constructTree(vector<PixelNode*> &objectNodeVector, PixelNode* parent, 
int left, int right, int kLvl) 
{ 
 if (right != left) 
 { 
  static int counter = 0; 
  int midPoint = ((left + right) / 2); 
  objectNodeVector[midPoint]->setParent(parent); 
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  if (head == 0) //Check if the tree is empty 
  { 
   head = objectNodeVector[midPoint]; 
  } 
 
  if (midPoint - left > 1) //Check if there are nodes to the left of  

the midPoint 
  { 

objectNodeVector[midPoint]->setLeft(objectNodeVector[(left + 
midPoint - 1) / 2]); 

   counter++; 
   constructTree(objectNodeVector, objectNodeVector[midPoint], left,  

midPoint - 1, (kLvl + 1) % numberOfValues); 
  } 
 
  if (right - midPoint > 1) //Check if there are nodes to the right of  

the midPoint 
  { 

objectNodeVector[midPoint]->setRight(objectNodeVector[(right + 
midPoint + 1) / 2]); 

   counter++; 
   constructTree(objectNodeVector, objectNodeVector[midPoint],  

midPoint + 1, right, (kLvl + 1) % numberOfValues); 
  } 
 } 
} 
 
/************************************************************************************** 
 NAME: createPrunedVector        
 CLASS: PixelTree          
 
 READS THE VALUES FROM THE PRUNED TREE BACK INTO THE PIXELNODEVECTOR TO BALANCE  
 AND CREATE KD-TREE 
 Only meant to be used after the createPruningTree function has been run on a  
 tree.       
 
 Llewellyn Johnston - May 2016      
**************************************************************************************/ 
 
void PixelTree::createPrunedVector(vector<PixelNode*> &pixelNodeVector, PixelNode* 
currentNode) 
{ 
 if (currentNode != 0) 
 { 
  pixelNodeVector.push_back(currentNode); 
  createPrunedVector(pixelNodeVector, currentNode->getLeft()); 
  createPrunedVector(pixelNodeVector, currentNode->getRight()); 
 } 
} 
 
 
void PixelTree::printTypes(PixelNode* current) 
{ 
 if (current != 0) 
 { 
  printTypes(current->getLeft()); 
  cout << current->getType() << endl; 
  printTypes(current->getRight()); 
 } 
} 
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/**************************************************************************************
 NAME: createPruningTree       
 CLASS: PixelTree          
 

ADDS THE PIXELNODES FROM THE VECTOR ONTO THE TREE AND IF AN EXACT MATCH IS FOUND 
INCREMENTS THE COUNT 
Importantly, this tree is not balanced, it is merely for pruning the tree for 
use in the balanced tree for the kNN algorithm. It functions like a normal tree 
using the first vector node as the head and then goes left or right depending on 
if the value of the current kLvl. 
 

 Llewellyn Johnston - May 2016       
**************************************************************************************/ 
 
void PixelTree::createPruningTree(vector<PixelNode*> &pixelNodeVector, int position = 
0) 
{ 
 while (position < pixelNodeVector.size()) 
 { 
  if (head == 0) 
  { 
   head = pixelNodeVector[position]; 
  } 
  else if (position < pixelNodeVector.size()) 
  { 
   int kLvl = 0; 
   bool match = false; 
   PixelNode* currentPosition = head; 
   PixelNode* previousPosition = currentPosition; 
   while (currentPosition != 0 && match != true) 
   { 
    previousPosition = currentPosition; 
    if (pixelNodeVector[position]->getValue(kLvl) ==  

currentPosition->getValue(kLvl)) 
    { 

if (pixelNodeVector[position]-
>isMatch(currentPosition)) 

     { 
      match = true; 
      currentPosition->incrementCount(); 
      continue; //CHECK WHETHER THIS IS FOR  

ENTIRE FOR LOOP 
     } 
    } 
    if (pixelNodeVector[position]->getValue(kLvl) <  

currentPosition->getValue(kLvl)) 
    { 
     currentPosition = currentPosition->getLeft(); 
    } 
    else 
    { 
     currentPosition = currentPosition->getRight(); 
    } 
    kLvl = (kLvl+1)%numberOfValues; //USING 3 FOR NOW BECAUSE  

   FORGOT ABOUT THIS, TODO 
   } 
   if (match == false) 
   { 

if (pixelNodeVector[position]->getValue(kLvl) < 
previousPosition->getValue(kLvl)) 

    { 
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previousPosition-
>setLeft(pixelNodeVector[position]); 

    } 
    else 
    { 

previousPosition-
>setRight(pixelNodeVector[position]); 

    } 
    pixelNodeVector[position]->setParent(previousPosition); 
   } 
  } 
  position++; 
 } 
} 
 
/************************************************************************************** 
 NAME: pruneBalanceVector        
 CLASS: PixelTree          
 

PRUNES THE PIXELNODE VECTOR TO GET RID OF DUPLICATE ENTRIES WITHIN THE TRAINING 
DATA 
Calls the functions createPruningTree to establish an unbalanced pruned tree, 
clears the training vector, then uses the createPurnedVector function to take 
all the pruned nodes from the tree and place them back into the training vector. 
Reset all the links on the training nodes otherwise can cause infinite loops 
during the kNN.          
 
Llewellyn Johnston - May 2016       

**************************************************************************************/ 
 
vector<PixelNode*> PixelTree::pruneBalanceVector(vector<PixelNode*> &pixelNodeVector, 
int K) 
{ 
 //Create tree and when adding elements to tree check if they already exist 
 //If element already exists (all the pixelNodeVector[] values are the same) 
 //Then increment the counter on that node but don't make new leaf 
 //If element does not exist then add leaf to tree like normal 
 //After creating tree (and pruning) place the tree back into the original  

//vector to be balanced and used to create actual tree for kNN 
 PixelTree* pruningTree = new PixelTree(K); 
 pruningTree->createPruningTree(pixelNodeVector); 
 pixelNodeVector.clear(); 
 pruningTree->createPrunedVector(pixelNodeVector, pruningTree->getHead()); 
 for (int i = 0; i < pixelNodeVector.size(); i++) 
 { 
  pixelNodeVector[i]->setLeft(0); 
  pixelNodeVector[i]->setRight(0); 
  pixelNodeVector[i]->setParent(0); 
 } 
 return pixelNodeVector; 
} 
 
/************************************************************************************** 
 NAME: kNearestNeighbourNodes        
 CLASS: PixelTree          
 

THE MAIN PURPOSE OF THIS CLASS IS THE KNN ALGORITHM WHICH USES A BOUNDED 
PRIORITY QUEUE FOR RETURN 
A recursive function that traverses through the tree looking for a leaf node.  
Each node is inserted into the queue (which may or may not add based on 
distance) before stepping farther down the tree. If the queue is not full (not 
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all k neighbours have been found) then it steps back up one level and goes the 
opposite direction from its previous path and checks that entire subtree for 
nearest neighbours. 
 

 Llewellyn Johnston - May 2016     
/************************************************************************************** 
 
void PixelTree::kNearestNeighbourNodes(BPQHeap *neighbourList, vector<float> 
newObjectNode) 
{ 
 PixelNode* currentNode = head; 
 stack<PixelNode*> pixelStack; 
 stack<int> previousPath; //0 = LEFT, 1 = RIGHT, 2 = NEITHER, 3 = BOTH 
 stack<PixelNode*> childStack; 
 int prevPath; 
 
 float distance; 
 bool bottom = false; 
 int kLvl = 0; 
 
 
 
 while (!bottom) 
 { 

if (newObjectNode[kLvl] < currentNode->getValue(kLvl) && currentNode-
>getLeft() != 0) 

  { 
   if (currentNode->getLeft() != 0) 
   { 
    currentNode = currentNode->getLeft(); 
    prevPath = 0; 
   } 
   else 
    bottom = true; 
  } 
  else 
  { 
   if (currentNode->getRight() != 0) 
   { 
    currentNode = currentNode->getRight(); 
    prevPath = 1; 
   } 
   else 
    bottom = true; 
  } 
  kLvl = (kLvl + 1) % numberOfValues; 
 } 
 
 distance = currentNode->getDistance(newObjectNode); 
 neighbourList->insert(currentNode, distance); 
 
 pixelStack.push(currentNode->getParent()); 
 previousPath.push(prevPath); 
 

if (currentNode->getLeft() != 0) //FOR THE OCCASSION WHERE A LEAF NODE WAS 
SELECTED BECAUSE IT DIDN'T HAVE TWO 
CHILDREN NODES, ONLY ONE 

 { 
  distance = currentNode->getLeft()->getDistance(newObjectNode); 
  neighbourList->insert(currentNode->getLeft(), distance); 
 } 
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 else if (currentNode->getRight() != 0) 
 { 
  distance = currentNode->getRight()->getDistance(newObjectNode); 
  neighbourList->insert(currentNode->getRight(), distance); 
 } 
 

//AT THIS POINT THE CURRENTNODE IS SET TO THE LOWEST POINT IT WILL GET ON THAT 
BRANCH OF THE TREE, NOW WE START TRAVERSING UPWARDS 

 //ALSO THE NODE'S PARENT NODE IS CURRENTLY ON THE TOP OF THE PIXELSTACK 
 
 while (!pixelStack.empty()) 
 { 
  currentNode = pixelStack.top(); 
  pixelStack.pop(); 
 
  prevPath = previousPath.top(); 
  previousPath.pop(); 
 
  distance = currentNode->getDistance(newObjectNode); 
 
  if (neighbourList->isNotFull() || distance < neighbourList->getMax()) 
  { 
   neighbourList->insert(currentNode, distance); 
   if (currentNode != head) 
   { 

pixelStack.push(currentNode->getParent()); //PUSH PARENT 
POSITION ONTO 
STACK FOR 
LATER CHECK IF 
CLOSER OR 
QUEUE NOT FULL 

    if (currentNode == currentNode->getParent()->getLeft()) 
previousPath.push(0); //CHECKED LEFT OF 

PARENT NODE ALREADY 
    else 

previousPath.push(1); //CHECKED RIGHT OF 
PARENT NODE ALREADY 

   } 
   if (prevPath == 0) //IF LEFT ALREADY CHECK THEN SET CURRENT  

NODE TO RIGHT CHILD 
    childStack.push(currentNode->getRight()); 
   else if (prevPath == 1) //IF RIGHT ALREADY CHECKED THEN SET  

CURRENT NODE TO LEFT CHILD 
    childStack.push(currentNode->getLeft()); 
 
   //TRAVERSE THE ENTIRE SUBRANCH LOOKING FOR CLOSER POINTS 
   while (!childStack.empty()) 
   { 
    currentNode = childStack.top(); 
    childStack.pop(); 
    if (currentNode != 0) 
    { 

distance = currentNode-
>getDistance(newObjectNode); 

     neighbourList->insert(currentNode, distance); 
 
     childStack.push(currentNode->getRight()); 
     childStack.push(currentNode->getLeft()); 
    } 
   } 
  } 
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 } 
} 

 

Classification Voting System 

BPQHeap.h 

#include <string> 
 
class PixelNode; //class prototype to avoid recursive includes 
 
using namespace std; 
int const THRESHOLD = INT_MAX; 
 
#ifndef BPQ_HEAP 
#define BPQ_HEAP 
 
/************************************************************************************** 
 CLASS: BPQElement          

 
THIS IS THE BPQELEMENT THAT IS CONTAINED IN THE BPQHEAP, IT CONTAINS A PIXELNODE 
POINTER AND DISTANCE 
The pixel is the one that is a nearest neighbour to the pixel being classified, 
the distance is the Euclidian distance between the two pixels based on their 
spectral values. Distance is not handled here but has to be passed in as the 
intended value. 
 
Llewellyn Johnston - June 2016       

  
**************************************************************************************/ 
 
struct BPQElement 
{ 
 PixelNode* node = 0; 
 float distance = THRESHOLD; //really large starting value by default 
}; 
 
/************************************************************************************** 
 CLASS: BPQHeap           

 
THIS IS THE BPQHEAP THAT CONTAINS THE ARRAY OF BPQELEMENTS AND ACTS AS A HEAP 
(SPECIALIZED BINARY TREE) 
 
Has the main function heapify which will place the element with the largest 
distance at the top of the tree so that it can be compared to new possible 
elements and replaced if a pixel with a smaller distance is found.  
        

 Llewellyn Johnston - June 2016     
**************************************************************************************/ 
 
class BPQHeap 
{ 
private: 
 int size = 0; 
 BPQElement* heapArray; 
 int left(int); 
 int right(int); 
 void heapify(int); 
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public: 
 BPQHeap(int newSize) 
 { 
  size = newSize; 
  heapArray = new BPQElement[size]; 
 } 
 ~BPQHeap() 
 { 
  delete[] heapArray; 
 } 
 
 PixelNode* getElement(int i) { return heapArray[i].node; } 
 void insert(PixelNode*, float); 
 float getMax() { return heapArray[0].distance; } 
 bool isNotFull() { return heapArray[0].node == 0; } 
 void reset(); 
}; 
 
#endif 

 

BPQHeap.cpp 

#include "BPQHeap.h" 
 
/************************************************************************************** 
 NAME: left           

CLASS: BPQHeap          
  

RETURNS THE LEFT CHILD OF THE GIVEN PARENT POSITION 
 
If the left child position falls outside of the maximum bound of the array then 
return -1 as a flag. This keeps the heap bounded to the initial size.  
 
Llewellyn Johnston - May 2016         

**************************************************************************************/ 
 
int BPQHeap::left(int parent) 
{ 
 int left = 2 * parent + 1; 
 if (left < size) 
  return left; 
 else 
  return -1; 
} 
 
/**************************************************************************************
 NAME: right         
 CLASS: BPQHeap          
  

RETURNS THE RIGHT CHILD OF THE GIVEN PARENT POSITION 
If the left child position falls outside of the maximum bound of the array then 
return -1 as a flag. This keeps the heap bounded to the initial size.   

 
Llewellyn Johnston - May 2016        

**************************************************************************************/ 
 
int BPQHeap::right(int parent) 
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{ 
 int right = 2 * parent + 2; 
 if (right < size) 
  return right; 
 else 
  return -1; 
} 
 
/************************************************************************************** 
 NAME: insert           

CLASS: BPQHeap          
  

REPLACES THE CURRENT MAXIMUM NODE WITH A NEW NODE AND THEN HEAPIFIES  
Does swap the first and last elements of the array before calling the heapify 
function. 
  
Llewellyn Johnston - May 2016 

**************************************************************************************/ 
 
void BPQHeap::insert(PixelNode* newNode, float newDistance) 
{ 
 if (heapArray[0].distance > newDistance) 
 { 
  heapArray[0].distance = newDistance; 
  heapArray[0].node = newNode; 
 
  //Swap the first and last elements to prepare for a heapify 
  BPQElement temp = heapArray[0]; 
  heapArray[0] = heapArray[size - 1]; 
  heapArray[size - 1] = temp; 
 
  //heapify the array based on the first element 
  heapify(0); 
 } 
} 
 
/************************************************************************************** 
 NAME: heapify          
 CLASS: BPQHeap          
  

HEAPIFIES THE HEAPARRAY RETURNS THE LEFT CHILD OF THE GIVEN PARENT POSITION 
Find the left and right children's positions. Then, if both children fall within 
the bounds of the array AND the distance of the right child is greater than the 
distance of left child then set the left child to the max. Now childLPosition is 
the position of the maximum distance element, if its distance is greater than 
the distance of the current position (parent) then swap those two elements and 
continue the heapify function on the swapped child node.     

 
Llewellyn Johnston - May 2016         

**************************************************************************************/ 
 
void BPQHeap::heapify(int position) 
{ 
 int childLPosition = left(position); //get the position for the left child 
 int childRPosition = right(position); //get the position for the right  

child 
if (childLPosition > 0 && childRPosition > 0 && 
heapArray[childRPosition].distance > heapArray[childLPosition].distance) 

  childLPosition = childRPosition; //set childLPosition to the larger  
of the two children 



35 

if (childLPosition > 0 && heapArray[childLPosition].distance > 
heapArray[position].distance) 

 { 
  BPQElement temp = heapArray[position]; 
  heapArray[position] = heapArray[childLPosition]; 
  heapArray[childLPosition] = temp; 
  heapify(childLPosition); 
 } 
} 
 
void BPQHeap::reset() 
{ 
 for (int i = 0; i < size; i++) 
 { 
  heapArray[i].distance = THRESHOLD; 
  heapArray[i].node = 0; 
 } 
} 

 

Image Output System 

Raster.h 

#include "opencv2/highgui.hpp" 
#include "opencv2/core.hpp" 
#include "opencv2/imgproc.hpp" 
#include <iostream> 
 
using namespace cv; 
using namespace std; 
 
/**************************************************************************************
 CLASS: rasterImage          
 

THIS IS THE CLASS FOR THE OUTPUT IMAGE CONTAINS ABILITY TO SAVE GREYSCALE, 
COLOURIZED, AND BLURRED IMG 
In addition keeps track of the total number of classes within the image.   

 
Llewellyn Johnston - June 2016      

**************************************************************************************/ 
 
class rasterImage 
{ 
private: 
 Mat raster; 
 int numberOfClasses = 0; 
 int inputtedClassNumbers = 0; 
 int type; 
 void saveColourizedImage(string path); 
 void saveGreyscaleImage(string path); 
 
public: 
 void saveBlurredImage(string path, int blurRatio); 
 void printFirstElement(); 
 void setSize(int rows, int columns, int nType); 
 void setPixelClasses(int x, int y, int cls); 
 void saveImage(string path); 
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 void saveImage(string path, int time); 
 Mat getRaster() { return raster; } 
}; 

Raster.cpp 

#include "Raster.h" 
 
using namespace cv; 
using namespace std; 
 
/************************************************************************************** 
 NAME: setSize         
 CLASS: rasterImage         
  

SETS THE SIZE OF THE RASTER IMAGE AND THE TYPE OF IMAGE BEING CREATED (GREYSCALE 
OR COLOUR) 
Pretty self explanatory...         
 
Llewellyn Johnston - June 2016       

**************************************************************************************/ 
 
void rasterImage::setSize(int rows, int columns, int nType) 
{ 
 if (nType == 0) //if greyscale 
  raster = Mat(rows, columns, CV_8UC1); 
 else //if colourized 
  raster = Mat(rows, columns, CV_8UC3); 
 type = nType; 
} 
 
/************************************************************************************** 
 NAME: setPixelClasses         
 CLASS: rasterImage         
  

SETS THE CLASS NUMBER TO THE PIXELVALUE FOR AN (X, Y) COORDINATE IN THE RASTER 
MAT FOR LATER USE 
If the current class number is larger than the recorded number of classes then 
the number of classes is set to the new highest value.    
 
Llewellyn Johnston - June 2016        

**************************************************************************************/ 
 
void rasterImage::setPixelClasses(int x, int y, int cls) 
{ 
 if (cls > numberOfClasses) 
 { 
  numberOfClasses = cls; 
 } 
 
 if (type == 0) 
 { 
  raster.at<uchar>(x, y) = cls; 
 } 
 else 
 { 
  Vec3b bgr; 
  bgr[0] = cls, bgr[1] = 0, bgr[2] = 0; 
  raster.at<Vec3b>(x, y) = bgr; 
 } 
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} 
 
/************************************************************************************** 
 NAME: printFirstElement         

CLASS: rasterImage         
  

DEBUGGING FUNCTION TO SEE WHAT WAS ACTUALLY BEING STORED IN THE FIRST POSITION 
OF THE COLOURIZED IMAGE 
 
Llewellyn Johnston - June 2016     

**************************************************************************************/ 
 
void rasterImage::printFirstElement() 
{ 
 int q; 
 for (int i = 0; i < raster.rows - 3; i++) 
 { 
  for (int j = 0; j < raster.cols; j++) 
  { 
   q = (int)raster.at<Vec3b>(i, j)[0]; 
   cout << q << " "; 
  } 
 } 
} 
 
/************************************************************************************** 
 NAME: setSize           

CLASS: saveColourizedImage        
  

BASED ON THE PREVIOUSLY ESTABLISHED CLASS NUMBER SET THE COLOUR OF THE PIXEL AND 
STORE IT IN RASTER 
After setting all of the pixels then save the image to the provided path  

  
NOTE: STILL A WIP (Work in Progress), DOESN'T HANDLE LOTS OF CLASSES VERY WELL 

  
Llewellyn Johnston - June 2016        

**************************************************************************************/ 
 
void rasterImage::saveColourizedImage(string path) 
{ 
 int cls; 
 Vec3b pixel; 
 for (int i = 0; i < raster.rows; i++) 
 { 
  for (int j = 0; j < raster.cols; j++) 
  { 
   cls = (int)raster.at<Vec3b>(i, j)[0]; 
 
   if (cls == 0) 
   { 
    pixel[0] = 0; 
    pixel[1] = 0; 
    pixel[2] = 0; 
   } 
   else if (cls == 1) 
   { 
    pixel[0] = 0; 
    pixel[1] = 255; 
    pixel[2] = 0; 
   } 
   else if (cls == 2) 
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   { 
    pixel[0] = 0; 
    pixel[1] = 0; 
    pixel[2] = 255; 
   } 
   else if (cls == 3) 
   { 
    pixel[0] = 255; 
    pixel[1] = 255; 
    pixel[2] = 0; 
   } 
   else if (cls == 4) 
   { 
    pixel[0] = 255; 
    pixel[1] = 0; 
    pixel[2] = 255; 
   } 
   else if (cls == 5) 
   { 
    pixel[0] = 0; 
    pixel[1] = 255; 
    pixel[2] = 255; 
   } 
   else if (cls == 6) 
   { 
    pixel[0] = 255; 
    pixel[1] = 0; 
    pixel[2] = 0; 
   } 
   else 
   { 
    pixel[0] = 255; 
    pixel[1] = 255; 
    pixel[2] = 255; 
   } 
 
   raster.at<Vec3b>(i, j) = pixel; 
  } 
 } 
 
 imwrite(path, raster); 
 
 return; 
} 
 
/**************************************************************************************
 NAME: setSize           

CLASS: saveGreyscaleImage        
             

BASED ON THE PREVIOUSLY ESTABLISHED CLASS NUMBER SET THE COLOUR OF THE PIXEL AND 
STORE IT IN RASTER 
After setting all of the pixels then save the image to the provided path   
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**************************************************************************************/ 
 
void rasterImage::saveGreyscaleImage(string path) 
{ 
 int pixel = 0; 
 for (int i = 0; i < raster.rows; i++) 
 { 
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  for (int j = 0; j < raster.cols; j++) 
  { 
   pixel = raster.at<uchar>(i, j); 
   pixel = ((float)pixel / numberOfClasses) * 255; 
   raster.at<uchar>(i, j) = pixel; 
  } 
 } 
 
 imwrite(path, raster); 
 
 return; 
} 
 
/************************************************************************************** 
 NAME: setSize          
 CLASS: saveImage         
  

CALLS THE GREYSCALE SAVE OR THE COLOURIZED SAVE BASED ON THE IMAGE TYPE 
ESTABLISHED AT CONSTRUCTION 
Pretty self explanatory...         
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**************************************************************************************/ 
 
void rasterImage::saveImage(string path) 
{ 
 if (type == 0) 
  saveGreyscaleImage(path); 
 else 
  saveColourizedImage(path); 
} 
 
/************************************************************************************** 

NAME: setSize          
 CLASS: saveImage         
  

CALLS THE GREYSCALE SAVE OR THE COLOURIZED SAVE BASED ON THE IMAGE TYPE 
ESTABLISHED AT CONSTRUCTION 
Pretty self explanatory...  This one has a time appended to end of image 
title        
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**************************************************************************************/ 
 
void rasterImage::saveImage(string path, int time) 
{ 
 int position = path.find('.'); 
 string beginning = path.substr(0, position); 
 path = beginning + '_' + to_string(time) + path.substr(position); 
 if (type == 0) 
  saveGreyscaleImage(path); 
 else 
  saveColourizedImage(path); 
} 
 
/************************************************************************************** 
 NAME: setSize          
 CLASS: saveBlurredImage        
  

USES OPENCV3.1'S MEDIANBLUR FUNCTION USING THE BLURRATIO COMMAND ARGUMENT, SAVES 
TO PROVIDED PATH 
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Pretty self explanatory...         
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**************************************************************************************/ 
 
void rasterImage::saveBlurredImage(string path, int blurRatio) 
{ 
 Mat raster2; // = Mat(raster.rows, raster.cols, CV_8UC3); 
 medianBlur(raster, raster2, blurRatio); 

imwrite(path, raster2); 
} 

 

Main Body Source Code 

Source.h 

#include "PixelTree.h" 
#include "classList.h" 
#include "Raster.h" 
#include <ppl.h> 
#include <mutex> 
#include <fstream> 
#include <iostream> 
 
using namespace cv; 
using namespace std; 
using namespace concurrency; //USED FOR PARALLELIZATION 
 
void readFile(ifstream&, Mat&, vector<PixelNode*>&, int); 
int addTrainingData(string cls, Mat imgD, vector<PixelNode*> &trainingData, int 
startRow, int endRow, int startCol, int endCol); 
void saveFile(ofstream&, PixelTree*); 
int voting(BPQHeap*, int); 
string blurredPath(string); 
string ASCIIPath(string); 
void exportASCII(rasterImage&, string); 
Mat classifyImage(Mat, rasterImage&, PixelTree*, classList&, int); 
 
//*************************************************************************************
*************************************// 
// MAIN           
            
      // 
// ARGUMENTS ORDER: TRAINING DATA, BALANCED, INPUT IMAGE, OUTPUT IMAGE, TYPE, 
NEIGHBOUR COUNT, BLUR RATIO     // 
//            
            
       // 
// TRAINING DATA: The input text file for the training data    
           
 // 
// BALANCED: 0 or 1, 0 = no balancing, 1 = balanced     
            
 // 
// INPUT IMAGE: The image being classified      
            
   // 
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// OUTPUT IMAGE: The output image for the classified image (if Blurred will be 
saved in same location with added "Blur") // 
// TYPE: 0 or 1, 0 = greyscale, 1 = colourized      
            
  // 
// NEIGHBOUR COUNT: The number of desired neighbourCount to classify on  
           // 
// BLUR RATIO: An odd positive number for scale of median blur to be applied, if 
not given no blur will be applied   // 
//            
            
       // 
// Llewellyn Johnston - June 2016       
            
    // 
//*************************************************************************************
*************************************// 
 
int main(int argc, char** argv) 
{ 
 if (argc != 9 && argc != 10 && argc != 11) //Check if correct command line 
arguments number 
 { 

cout << endl << "Program usage: Requires appropriate command line 
arguments" << endl; 
cout << endl << "EXE *\"Training Data\" *\"Balanced\" *\"Input Image\" 
*\"Output Image\" *\"Image Type\" *\"Neighbour Count\" *\"Blur Ratio\" " 
<< endl; 
cout << endl << "DIMENSIONCOUNT: The number of dimensions being looked 
at (generally 3 or 4)"; 
cout << endl << "TRAINING DATA: The input text file for the training 
data"; 
cout << endl << "TRAINING BASE IMAGE: The input image file for the 
training data"; 
cout << endl << "TRAINING TEXTURE IMAGE: The texture image file for the 
training data"; 

  cout << endl << "BALANCED: 0 or 1, 0 = no balancing, 1 = balanced"; 
  cout << endl << "INPUT IMAGE: The image being classified"; 

cout << endl << "OUTPUT IMAGE: The output image for the classified 
image"; 

  cout << endl << "TYPE: 0 or 1, 0 = greyscale, 1 = colourized"; 
cout << endl << "NEIGHBOUR COUNT: The number of desired neighbourCount 
to classify on"; 
cout << endl << "(Optional) BLUR RATIO: An odd positive number for scale 
of median blur to be applied, if not given no blur will be applied"; 

  cout << endl; 
  return 1; 
 } 
 else //If corrent command line argument number then try 
 { 
  int dimensionCount = atoi(argv[1]); 
  string trainingDataFile = argv[2]; 
  string inputTrainingImage = argv[3]; 
  string inputTextureImage, inputImageFile, outputImageFile; 
  bool balanced; 
  int type, neighbourCount, blurRatio; 
  if (dimensionCount == 4) 
  { 
   inputTextureImage = argv[4]; 
   balanced = atoi(argv[5]); 
   inputImageFile = argv[6]; 
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   outputImageFile = argv[7]; 
   type = atoi(argv[8]); 
   neighbourCount = atoi(argv[9]); 
   if (argc == 11) //Check if blur option filled in 
    blurRatio = atoi(argv[10]); 
  } 
  else if (dimensionCount == 3) 
  { 
   balanced = atoi(argv[4]); 
   inputImageFile = argv[5]; 
   outputImageFile = argv[6]; 
   type = atoi(argv[7]); 
   neighbourCount = atoi(argv[8]); 
   if (argc == 10) //Check if blur option filled in 
    blurRatio = atoi(argv[9]); 
  } 
   
  ifstream inFile; //Input file for the training data 
  vector<PixelNode*> newNodes; //PixelNode vector for balancing and 
creating the KD-Tree 
  Mat inputImage; //Input image file, image being classified 
  Mat trainingBaseImage; 
  Mat trainingTextureImage; 
  rasterImage outputImage; //OutputImage of class rasterImage 
(Raster.h) 
  classList list; //List of classes for the pixels in the output 
image, used in voting 
  int pixelVal; //The integer valued for the determined className used for 
saving the image 
 
  time_t startT, startC; 
  time_t endT, endC; 
   
  time(&startT); 
  inFile.open(trainingDataFile); 
  inputImage = imread(inputImageFile); 
  outputImage.setSize(inputImage.rows, inputImage.cols, type); //Set 
the size of the output image and the type (greyscale or colourized) 
 
  trainingBaseImage = imread(inputTrainingImage); 
  trainingTextureImage = imread(inputTextureImage); 
 
  readFile(inFile, trainingBaseImage, newNodes, dimensionCount); 
   
  PixelTree* pixelTree = new PixelTree(dimensionCount); //Initialized 
the KD-Tree using the dimensionCount  
   
  if (balanced == 0) //If the training data has not been balanced then 
prune it and balance it 
  { 
   cout << "Pruning vector... "; 

newNodes = pixelTree->pruneBalanceVector(newNodes, 
dimensionCount); //Prune the vector from the inputFile 

   cout << "finished" << endl; 
   cout << "Balancing vector... "; 
   pixelTree->balanceVector(newNodes); 
   cout << "finished" << endl; 
  } 
 
  cout << "Constructing tree... "; 
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  pixelTree->constructTree(newNodes, 0, 0, newNodes.size() - 1);
 //Construct the tree using the pruned and balanced vector 
  cout << "finished" << endl; 
 
  time(&startC); 

inputImage = classifyImage(inputImage, outputImage, pixelTree, list, 
neighbourCount); 

  time(&endC); 
 
  list.printList(); 
   
  time(&endT); //end time for processing, tag onto image name 
 
  double totalTime = difftime(endT, startT); 
  //exportASCII(outputImage, outputImageFile); 
  outputImage.saveImage(outputImageFile, totalTime); 
  /*if (blurRatio > 0) 
   outputImage.saveBlurredImage(blurredPath(outputImageFile), 
blurRatio);*/ 
   
  delete pixelTree; //Delete the pixelTree 
  cout << "Completed" << endl; 

cout << "Classification time: " << difftime(endC, startC) << " seconds." 
<< endl; 
cout << "Total time: " << difftime(endT, startT) << " seconds." << endl 
<< endl; 

 
  return 0; 
 } 
} 
 
/************************************************************************************** 

NAME: readFile          
  

READS TRAINING DATA IN FROM AN INPUT FILE THAT HAS THE DIMENSIONS VALUE AT THE 
TOP AS "K=#" 
Reads the values in from the file and then creates new PixelNodes within the 
training data vector 
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**************************************************************************************/ 
 
void readFile(ifstream &inFile, Mat &inputBaseImage, vector<PixelNode*> &trainingData, 
int dimensionCount) 
{ 
 string line; 
 getline(inFile, line); 
 
 string type; 
 int counter = 0; 
 int x; 
 int y; 
 getline(inFile, line); 
 while (!inFile.eof()) 
 { 
  vector<float> values; 
 
  int pos = line.find(','); 
  type = line.substr(0, pos); 
  line = line.substr(pos + 1); 
  pos = line.find(','); 
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  x = stoi(line.substr(0, pos)); 
  y = stoi(line.substr(pos + 1)); 
 
  Vec3b& bgr = inputBaseImage.at<Vec3b>(y, x); 
  vector<float> newPixel; 
  newPixel.push_back(bgr[2]); 
  newPixel.push_back(bgr[1]); 
  newPixel.push_back(bgr[0]); 
 

trainingData.push_back(new PixelNode(newPixel, type, 0, 
dimensionCount)); 

  getline(inFile, line); 
 } 
} 
 
int readFile(ifstream &inFile, vector<PixelNode*> &newNodes) 
{ 
 string string_kValue; 
 int int_kValue; 
 getline(inFile, string_kValue); 
 //int_kValue = stoi(string_kValue.substr(2, string_kValue.length() - 2)); 
 int_kValue = 3; //TO DO - POSITION HOLDER 
 
 string line; 
 string type; 
 int counter = 0; 
 int commaPosition1; 
 int commaPosition2; 
 int commaPosition3; 
 while (!inFile.eof()) 
 { 
  vector<float> values; 
 
  getline(inFile, line); 
  commaPosition1 = line.find(','); 
  commaPosition2 = line.find(',', commaPosition1 + 1); 
  commaPosition3 = line.find(',', commaPosition2 + 1); 
  type = line.substr(0, commaPosition1); 
  for (int i = 0; i < int_kValue; i++) 
  { 

values.push_back(stoi(line.substr(commaPosition1 + 1, 
commaPosition2 - commaPosition1 - 1))); 
values.push_back(stoi(line.substr(commaPosition2 + 1, 
commaPosition3 - commaPosition2 - 1))); 
values.push_back(stoi(line.substr(commaPosition3 + 1, line.size() 
- commaPosition3 - 1))); 

   //cout << "i"; 
  } 
 
  newNodes.push_back(0); 
  newNodes[counter] = new PixelNode(values, type, 0, int_kValue); 
  counter++; 
 } 
 
 return int_kValue; 
} 
 
/************************************************************************************** 
 NAME: addTrainingData        
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ADDS THE TRAINING DATA FROM THE INPUT IMAGE GIVEN THE PROVIDED COORDINATES 
PARAMETERS 
Adds blue, green, and red values of the pixels within the bounds of the 
coordinates 
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**************************************************************************************/ 
 
int addTrainingData(string cls, Mat imgD, vector<PixelNode*> &trainingData, int 
startRow, int endRow, int startCol, int endCol) 
{ 
 for (int row = startRow; row < endRow; row+=5) 
 { 
  for (int col = startCol; col < endCol; col+=5) 
  { 
   Vec3b& bgr = imgD.at<Vec3b>(row, col); 
   vector<float> newPixel; 
   newPixel.push_back(bgr[2]); 
   newPixel.push_back(bgr[1]); 
   newPixel.push_back(bgr[0]); 
 
   trainingData.push_back(new PixelNode(newPixel, cls, 0, 3)); 
  } 
 } 
} 
 
/************************************************************************************** 
 NAME: voting           
 

USES THE CLASSES BPQHEAP AND THE NEIGHBOUR COUNT TO RETURN THE MOST COMMON CLASS 
WITHIN THE HEAR 
Returns the string name of the class     
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**************************************************************************************/ 
 
int voting(BPQHeap* classes, int kCount) 
{ 
 vector<string> classNames; //Keeps track of all of the different class names  

found in the BPQHeap 
 vector<int> timesFound; //Corresponding vector to classNames to  

keep track of how many times the corresponding 
className has been seen 

 bool found; 
 string type; 
 
 for (int i = 0; i < kCount; i++) 
 { 
  found = false; 
  type = classes->getElement(i)->getType(); 
   
  for (int j = 0; j < classNames.size(); j++) 
  { 
   if (type == classNames[j]) 
   { 
    timesFound[j]++; 
    found = true; 
    break; 
   } 
  } 
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  if (!found) 
  { 
   classNames.push_back(type); 
   timesFound.push_back(1); 
  } 
 } 
 
 int max = 0; 
 int maxPosition; 
 
 for (int i = 0; i < classNames.size(); i++) 
 { 
  if (timesFound[i] > max) 
  { 
   maxPosition = i; 
   max = timesFound[i]; 
  } 
 } 
 
 type = classNames[maxPosition]; 
 //VERY SPECIFIC FOR FIREMAP, WILL ALTER FOR OTHER USES 
 //if (type == "BURN" || type == "CANCER") 
 if (type == "Unburn") 
  return 0; 
 else if (type == "Burn") 
  return 1; 
 else if (type == "DIRT") 
  return 2; 
 else if (type == "VEG") 
  return 3; 
 else if (type == "CONIFER") 
  return 4; 
 else if (type == "DECIDUOUS") 
  return 5; 
 else if (type == "BRUSH") 
  return 6; 
 else if (type == "HERBACEOUS") 
  return 7; 
 else 
  return 8; 
} 
 
/************************************************************************************** 

NAME: blurredPath         
  

ADDS THE WORD 'BLUR' TO END OF THE PROVIDED PATH FOR THE OUTPUT IMAGE FOR THE 
BLURRED OUTPUT IMAGE 
Pretty self explanatory...         
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**************************************************************************************/ 
 
string blurredPath(string path) 
{ 
 string blurPath; 
 int position = path.find('.'); 

blurPath = path.substr(0, position) + "Blur" + path.substr(position, 
path.length() - position); 

 return blurPath; 
} 
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/************************************************************************************** 
 NAME: ASCIIPath 
 
 CREATES THE FILE PATH FOR THE ASCII EXPORT 
 Appends ASCII.txt to the end of the given image output path  
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**************************************************************************************/ 
 
string ASCIIPath(string path) 
{ 
 string asciiPath; 
 int position = path.find('.'); 
 asciiPath = path.substr(0, position) + "ASCII.txt"; 
 return asciiPath; 
} 
 
/************************************************************************************** 
 NAME: exportASCII 

 
THE EXPORT FUNCTION FOR THE ASCII, WRITES THE CLASSIFIED IMAGE INTO A TEXT 
DOCUMENT WITH THE CLASSES LISTED (basically an un-normalize or compressed 
greyscale image) 
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**************************************************************************************/ 
 
 
void exportASCII(rasterImage& outputImage, string name) 
{ 
 ofstream outFile; 
 outFile.open(ASCIIPath(name)); 
 Mat raster = outputImage.getRaster(); 
 
 //ArcGIS header information for ASCII export 
 outFile << "NCOLS " << raster.cols << endl << "NROWS " << raster.rows << endl; 
 //TO DO------------------------------------------------------------------------- 
 outFile << "XLLCORNER " << "000000" << endl << "YLLCORNER " << "000000" << endl;
 //Filler information for now, will eventually red from file 
 outFile << "CELLSIZE 0.2" << endl << "NODATA_VALUE -32768" << endl << endl; 
 
 for (int row = 0; row < raster.rows; row++) 
 { 
  for (int col = 0; col < raster.cols; col++) 
  { 
   outFile << (int)raster.at<uchar>(row, col) << " "; 
  } 
  outFile << endl; 
 } 
} 
 
/************************************************************************************** 
 NAME: classifyImage 

 
PARALLEL FUNCTION TO CLASSIFY THE INPUT IMAGE USING THE TRAINING DATA 
Traverses through each pixel row by column assigning classifications to each 
based on the kNN algorithm and the given training data. 
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**************************************************************************************/ 



48 

 
Mat classifyImage(Mat inputImage, rasterImage& outputImage, PixelTree *pixelTree, 
classList &list, int neighbourCount) 
{ 
 mutex threadLock; 
 int pixelVal; 
 

parallel_for(0, inputImage.rows, 1, [&](int row) //For loop cycling through 
each of the rows in the image 

 { 
string className; //Voted className for the pixels in the output 

image, voted on using the classList 
for (int col = 0; col < inputImage.cols; col++) //For loop cycling 

through each of the 
columns in the image 

  { 
   BPQHeap *heap = new BPQHeap(neighbourCount); 
   Vec3b& bgr = inputImage.at<Vec3b>(row, col);//Grab the  

pixel at position 
(row, col) and place 
it in bgr 

   vector<float> newPixel; 
 
   newPixel.push_back(bgr[2]); //Push the RED value of pixel onto  

the newPixel vector 
   newPixel.push_back(bgr[1]); //Push the GREEN value of the pixel  

onto the newPixel vector 
   newPixel.push_back(bgr[0]); //Push the BLUE value of the pixel  

onto the newPixel vector 
 
   pixelTree->kNearestNeighbourNodes(heap, newPixel); //Get the k  

nearest 
neighbours and 
store into 
heap 

 
   pixelVal = voting(heap, neighbourCount); 
    
   threadLock.lock(); //threaded mutex variable to lock the  

writing sections of the parallel processing 
to avoid deadlocks and access violation 
errors 

   outputImage.setPixelClasses(row, col, pixelVal); //Set the  
pixel's class 
in the output 
image using 
the pixelVal 

   threadLock.unlock(); //unlock mutex variable for other threads  
to proceed 

   delete heap; 
  } 
 }); 
 return outputImage.getRaster(); 
} 


